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复数 快速傅里叶变换 多项式 例题

复数

定义
形如 a+ ib (a, b ∈ R2) 的数称为复数，其中 i 为虚数单位，i2 = −1。

• 复数的加法运算：

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

• 复数的加法满足封闭性、交换律、结合律，存在加法零元 0
（∀x ∈ C, x+ 0 = x），并且存在加法逆元（∀x ∈ C, ∃y ∈ C, x+ y = y + x = 0）。
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复数

定义
形如 a+ ib (a, b ∈ R2) 的数称为复数，其中 i 为虚数单位，i2 = −1。

• 复数的乘法运算：

(a+ ib)(c+ id) = ac− bd+ i(ad+ bc)

• 复数的乘法满足封闭性、交换律、结合律、分配律，存在乘法幺元 1
（∀x ∈ C, 1x = x1 = x），存在乘法逆元（∀x ∈ C∗, ∃y ∈ C, xy = yx = 1）。
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复数

• 设 z = a+ ib。
复数的模长

|z| =
√
a2 + b2

• 如果 a, b 不全为 0，
z =

a√
a2 + b2

+ i
b√

a2 + b2

• 可以发现，存在 θ 使得 cos(θ) = a√
a2+b2

，sin(θ) = b√
a2+b2

。
• 因此可以把 z = a+ ib 写成 |z| (cos(θ) + i sin(θ))。这是复数的极坐标表示形式。

欧拉公式

eiθ = cos(θ) + i sin(θ)
• 所以可以把 z 写成 |z|eiθ 的形式。 6/78
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单位根

n 次单位根
方程

zn = 1 (n ∈ N∗)

的复数根 z 为 n 次单位根。

• 可以验证 n 次单位根共有 n 个：
ei

2π
n
k (k = 0, 1, . . . , n− 1)

• 因为 (
ei

2π
n
k
)n

= ei2πk = cos(2πk) + i sin(2πk) = 1

• 设 ωn = ei
2π
n 。性质：

1 ωk
n = ω2k

2n

2 ωk
n = ωk mod n

n
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傅里叶变换

傅里叶变换

• 大二上 Signaux（信号学）第四章中：

傅里叶变换
对于一个周期为 T 的函数 f，求傅里叶级数：

C̃n =
2

T

∫ t0+T

t0

f(t) exp
(
−j 2π

T
nt

)
dt.

可以推得

f(t) = Re
(

+∞∑
n=0

C̃n exp
(
j
2π

T
nt

))
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离散傅里叶变换

离散傅里叶变换

• 离散傅里叶变换：Discrete Fourier Transform（Transformation de Fourier discrète）

离散傅里叶变换
对于一个序列 (sn)n∈J0,N−1K，其离散傅里叶变换后的序列 (Sn) 满足：
∀ n ∈ J0, N − 1K，

Sn =

N−1∑
k=0

sk exp
(
−i2π

N
kn

)
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离散傅里叶变换

离散傅里叶变换

连续傅里叶变换 离散傅里叶变换
C̃n = 2

T

∫ t0+T
t0

f(t) exp (−jnωt) dt Sn =
∑N−1

k=0 sk exp
(
−i2πN kn

)
T N
n n
t k
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离散傅里叶变换

离散傅里叶变换

离散傅里叶逆变换
逆变换（Inverse DFT，或 IDFT）

sk =
1

N

N−1∑
n=0

Sn exp
(
i
2π

N
kn

)
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离散傅里叶变换

离散傅里叶变换

连续傅里叶变换 离散傅里叶变换
C̃n = 2

T

∫ t0+T
t0

f(t) exp (−jnωt) dt Sn =
∑N−1

k=0 sk exp
(
−i2πN kn

)
T N
n n
t k

f(t) = Re
(∑+∞

n=0 C̃n exp
(
j 2πT nt

))
sk = 1

N

∑N−1
n=0 Sn exp

(
i2πN kn

)
T N
t k
n n
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离散傅里叶变换

离散傅里叶变换

• 证明逆变换：
• 设 ω = exp

(
i2πN
)
。∀ k ∈ Z，

N−1∑
n=0

ωkn =

N−1∑
n=0

(ωk)
n =

{
N, N | k,
1−ωkN

1−ωk =
1−exp(i 2πN kN)

1−ωk = 0, N ∤ k
• ∀ 0 ≤ k < N，

sk =
1

N

N−1∑
n=0

ωknSn =
1

N

N−1∑
n=0

ωkn
N−1∑
r=0

ω−rnsr

=
1

N

N−1∑
r=0

sr

N−1∑
n=0

ω(k−r)n =
1

N

N−1∑
r=0

sr[k = r]N = sk
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离散傅里叶变换

离散傅里叶变换

• ∀ 0 ≤ n < N，

Sn =

N−1∑
k=0

ω−knsk =

N−1∑
k=0

ω−kn 1

N

N−1∑
r=0

ωkrSr

=

N−1∑
r=0

Sr
1

N

N−1∑
k=0

ω(r−n)k =

N−1∑
r=0

Sr
1

N
[r = n]N = Sn

IDFT ◦DFT = DFT ◦ IDFT = idCJ0,N−1K .
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快速傅里叶变换

快速傅里叶变换

• 如果要根据定义进行 DFT，对于每一个 n ∈ J0, N − 1K，计算
Sn =

∑N−1
k=0 ω−knsk，那么需要先枚举 n ∈ J0, N − 1K，再枚举 k ∈ J0, N − 1K，

时间复杂度 O(N2)。IDFT 同理。
• 存在更快的方法，快速傅里叶变换，Fast Fourier Transform（FFT）。
• 其中比较常见的是 Cooley-Tukey 算法。用分治的思想，时间复杂度提升到

O(N logN)（log 以 2 为底）。
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复数 快速傅里叶变换 多项式 例题

快速傅里叶变换

Cooley-Tukey

• 观察 N = 4 的情况 s0, s1, s2, s3（ω = exp
(
i2π4
)
）。

• 我们将 (s0, s1, s2, s3) 分成两个序列：(t0 = s0, t1 = s2), (t′0 = s1, t
′
1 = s3)，并分

别对两个序列进行傅里叶变换，得到 T0 = s0 + s2, T1 = s0 + ω−2s2,
T ′
0 = s1 + s3, T ′

1 = s1 + ω−2s3.
• 现在要计算出 (s0, s1, s2, s3) 的快速傅里叶变换：

S0 = s0 + s1 + s2 + s3 = T0 + T ′
0,

S2 = s0 + ω−2s1 + ω−4s2 + ω−6s3 = T0 + ω−2T ′
0 = T0 − T ′

0

S1 = s0 + ω−1s1 + ω−2s2 + ω−3s3 = T1 + ω−1T ′
1,

S3 = s0 + ω−3s1 + ω−6s3 + ω−9s3 = T1 + ω−3T ′
1 = T1 − ω−1T ′

1.
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快速傅里叶变换

Cooley-Tukey

• 再扩展到 N = 8 的情况（ω = exp
(
i2π8
)
）。

S0 = (s0 + s1 + s2 + s3) + (s4 + s5 + s6 + s7) = T0 + T ′
0,

S4 = (s0 + s2 + s4 + s6) + ω−4(s1 + s3 + s5 + s7) = T0 + ω−4T ′
0 = T0 − T ′

0,

S1 = (s0 + ω−2s2 + ω−4s4 + ω−6s6) + ω−1(s1 + ω−2s3 + ω−4s5 + ω−6s7) = T1 + ω−1T ′
1,

S5 = (s0 + ω−2s2 + ω−4s4 + ω−6s6) + ω−5(s1 + ω−2s3 + ω−4s5 + ω−6s7) = T1 − ω−1T ′
1,

S2 = (s0 + ω−4s2 + s4 + ω−4s6) + ω−2(s1 + ω−4s3 + s5 + ω−4s7) = T2 + ω−2T ′
2,

S6 = (s0 + ω−4s2 + s4 + ω−4s6) + ω−6(s1 + ω−4s3 + s5 + ω−4s7) = T2 − ω−2T ′
2,

S3 = (s0 + ω−6s2 + ω−4s4 + ω−2s6) + ω−3(s1 + ω−6s3 + ω−4s5 + ω−2s7) = T3 + ω−3T ′
3,

S7 = (s0 + ω−6s2 + ω−4s4 + ω−2s6) + ω−7(s1 + ω−6s3 + ω−4s5 + ω−2s7) = T3 − ω−3T ′
3.
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快速傅里叶变换

Cooley-Tukey

• 假设 N = 2r。设 M = N
2 = 2r−1。

• 已经分别对 (s0, s2, . . . , sN−2) 和 (s1, s3, . . . , sN−1) 进行傅里叶变换，得到
(T0, T1, . . . , TM−1) 和 (T ′

0, T
′
1, . . . , T

′
M−1)。

Tk =

M−1∑
n=0

s2n exp
(
−i2π

M
kn

)

T ′
k =

M−1∑
n=0

s2n+1 exp
(
−i2π

M
kn

)
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快速傅里叶变换

Cooley-Tukey

Sk =

N−1∑
n=0

sn exp
(
−i2π

N
kn

)

=

M−1∑
n=0

s2n exp
(
−i2π

N
k · 2n

)
+

M−1∑
n=0

s2n+1 exp
(
−i2π

N
k · (2n+ 1)

)

=

M−1∑
n=0

s2n exp
(
−i2π

M
kn

)
+ exp

(
−i2π

N
k

)M−1∑
n=0

s2n+1 exp
(
−i2π

M
kn

)
= Tk + T ′

k exp
(
−i2π k

N

)
• 或者：

Sk =

{
Tk + T ′

k exp
(
−i2π k

N

)
, k < M,

Tk−M − T ′
k−M exp

(
−i2π k−M

N

)
, k ≥M.
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快速傅里叶变换

蝴蝶变换

图: 蝴蝶变换[1] 24/78
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快速傅里叶变换

伪代码

func dft(s0, s1, . . . , sN−1):
Result: (S0, S1, . . . , SN−1)
if N = 1 then

return (s0)
else

M ← N
2

(T0, T1, . . . , TM−1)← dft(s0, s2, . . . , sN−2)
(T ′

0, T
′
1, . . . , T

′
M−1)← dft(s1, s3, . . . , sN−1)

for k ← 0 to M − 1 do
Sk ← Tk + Tk+M exp

(
−i2π k

N

)
Sk+M ← Tk − Tk+M exp

(
−i2π k

N

)
end
return (S0, S1, . . . , SN−1)

end
25/78
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快速傅里叶变换

Cooley-Tukey
• 对于离散傅里叶逆变换：只需要把 exp

(
−i2π k

N

)
改为 exp

(
i2π k

N

)
。

func idft(s0, s1, . . . , sN−1):
Result: (S0, S1, . . . , SN−1)
if N = 1 then

return (s0)
else

M ← N
2

(T0, T1, . . . , TM−1)← idft(s0, s2, . . . , sN−2)
(T ′

0, T
′
1, . . . , T

′
M−1)← idft(s1, s3, . . . , sN−1)

for k ← 0 to M − 1 do
Sk ← Tk + Tk+M exp

(
+i2π k

N

)
Sk+M ← Tk − Tk+M exp

(
+i2π k

N

)
end
return (S0, S1, . . . , SN−1)

end 26/78
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快速傅里叶变换

Cooley-Tukey

• 分析其时间复杂度。
• 设 T (n) 表示对长度为 n 的数列进行 FFT 的计算次数。
• T (n) = 2T

(
n
2

)
+O(n) 其中 O(n) 表示计算次数可以近似为一个常数乘上 n。

• 由主定理得[2] T (n) = O(n logn)，相比于 O(n2) 时间效率大幅提高。
• 这是以 2 基底的 FFT（每次分成两半），也可以以其他数为基底，或者混合基底。
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多项式乘法

多项式乘法

• 再观察傅里叶变换公式

Sn =

N−1∑
k=0

sk exp
(
−i2π

N
kn

)

=

N−1∑
k=0

sk

(
exp

(
−i2π

N
n

))k

• 设
F (x) =

N−1∑
i=0

six
i

• 那么
Sn = F

(
exp

(
−i2π

N
n

))
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多项式乘法

多项式乘法

• 所以离散傅里叶变换能得到一个函数在 x = exp
(
−i2πN n

)
(0 ≤ n < N) 处的取值。

• 离散傅里叶逆变换能根据 x = exp
(
−i2πN n

)
的取值变换出原来的函数。

• 一个 N 阶的多项式函数，只需要知道在 N + 1 个点的取值，就可以确定这个多
项式。
• 对于一个 M 阶函数 F (x) 和 R 阶函数 G(x)，那么 (FG)(x) = F (x)G(x) 是一
个 M +R 阶的函数。
• 我们取 N = 2⌈log2 (M+R+1)⌉。进行离散傅里叶变换得出 F 和 G 在

x = exp
(
−i2πN n

)
(0 ≤ n < N) 的取值。

• ∀x ∈ C，(FG)(x) = F (x)G(x)。也就得出了 FG 在 x = exp
(
−i2πN n

)
处的取值。

逆变换后得到 FG 的多项式。
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多项式乘法

多项式乘法

• 等价于快速算出两个数列的卷积：

cn =

n∑
k=0

akbn−k

• 时间复杂度为 O(n logn)。
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多项式乘法

多项式乘法

• 在实际数值计算中，因为单位根的实部和虚部都为小数，误差不可避免。
• 在信息学竞赛中，为了消除误差的影响，一般取 p = 998244353 为模数：
• 998244353 是一个质数，Z/pZ 是一个域（可以定义加减乘除，任意一个非零的 x 有
乘法逆元 x−1 使得 x · x−1 ≡ 1 (mod p)，因为根据裴蜀定理，x · x−1 − p · y = 1 有
解）。

• 998244353 有原根 3（∀r ∈ J1, p− 2K，3r ̸≡ 1 (mod p)）。因此 3 满足复数单位根的
性质。（欧拉定理：∀(a, p) = 1，aφ(p) ≡ 1 (mod p)）

• 998244353 = 7× 17× 223 + 1，223 | φ(p) = p− 1。对于任意 N = 2r(r ≤ 23)，可以
计算出 3

p−1
N 作为复数单位根。

• 快速数论变换（Number-theoretic transform）。
• 也有其他模数的快速数论变换算法，如以毛啸命名的 MTT[3]。
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多项式求逆

多项式求逆

• 对于 N ∈ N∗ 和一个多项式 P (x) (p0 ̸= 0)，求出多项式 Q(x) 使得
P (x)Q(x) ≡ 1 (mod xN )。
• 设 p0, p1, . . . , pN−1 为 P (x) 中 x0, x1, . . . , xN−1 次项系数。q0, q1, . . . , qN−1 同理。

第一种方法
• q0 = 1

p0
；

• 递推求 qk (1 ≤ k < N)：
k∑

i=0

piqk−i = p0qk +

k∑
i=1

piqk−i = 0

qk = −

k∑
i=1

piqk−i

p0
• 算法复杂度为 O(N2)。 35/78
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多项式求逆

多项式求逆：第二种方法

• 上式是一个卷积的形式。
• 我们希望用 FFT 优化，但是需要先求出 q0, q1, . . . , qi−1 的值才能求出 qi。
• 我们采用 CDQ 分治（陈丹琦分治[4]）的思想，批量求解并进行卷积。

用分治进行多项式求逆
• 例如我们现在需要计算 q0, q1, . . . , qn。

• 我们记 tk =
k∑

i=1

piqk−i。那么 qk = − tk
p0
。所以关键是计算 tk。

• 假设我们已经计算出 q0, q1, . . . , qm（这一步可以认为是递归求解）。

• 我们先考虑 q0, . . . , qm 对 tk (m+ 1 ≤ k ≤ n) 的贡献。即计算
∑

1≤i≤k,k−i≤m

piqk−i。这显

然是个卷积的形式，可以 FFT 加速。
• 我们再递归求解 qm+1, qm+2, . . . , qn。 36/78
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复数 快速傅里叶变换 多项式 例题

多项式求逆

多项式求逆：第二种方法

CDQ 分治
设一个数列 (f0, f1, . . . , fn) 存在递推关系。
func solve(l, r):

Result: 求出 fl, fl+1, . . . , fr
if l < r then

mid←
⌊
l+r
2

⌋
solve(l, mid)
计算出 fl, . . . , fmid 对 fmid+1, . . . , fr 的影响
solve(mid+ 1, r)

else
求出 fl

end
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复数 快速傅里叶变换 多项式 例题

多项式求逆

多项式求逆：第二种方法

• 正确性：∀i，在求出 fi 之前，考虑到了 f0, f1, . . . , fi−1 对 fi 的影响。
• 时间效率：
• fl, . . . , fmid 对 fmid+1, . . . , fr 的影响是一个卷积，因此可以用 FFT 加速计算。
• 时间复杂度 T (n) = 2T

(
n
2

)
+O(n logn)。根据主定理[2]得 T (n) = O(n log2 n)。
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复数 快速傅里叶变换 多项式 例题

多项式求逆

多项式求逆：第三种方法

泰勒展开
• 若一个函数 f(x) 在其定义域一点 x0 处 n 阶可导，那么

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 + . . .

+
f (n)(x0)

n!
(x− x0)

n + ox→x0 ((x− x0)
n)

=

n∑
i=0

f (i)(x0)

i!
(x− x0)

i + ox→x0 ((x− x0)
n)

• 其意义是，在 x0 的领域，可以将 f(x) 拟合成一个多项式。
• 可以验证：原函数和泰勒展开的函数的 0 到 n 阶导是相等的。
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复数 快速傅里叶变换 多项式 例题

多项式求逆

多项式求逆：第三种方法

牛顿迭代
• 我们要找出一个函数 f(x) 的零点 f(x0) = 0。
• 用迭代法不断逼近零点。
• 设当前迭代得到的点是 x1。对 f 在 x1 处进行一阶泰勒展开。

f(x) = f(x1) + f ′(x1)(x− x1) + ox→x1(x− x0)

求解
f(x1) + f ′(x1)(x− x1) = 0

x = x1 −
f(x1)

f ′(x1)

• x1 ← x1 − f(x1)
f ′(x1)

再进行迭代。
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复数 快速傅里叶变换 多项式 例题

多项式求逆

多项式求逆：第三种方法

• 现在要求 Q(x) ≡ (P (x))−1 (mod xN )（之后省略 (x)）。
• 我们设函数 F (A) = 1

A − P。那么 F (Q) ≡ 0 (mod xN )。
• 考虑牛顿迭代：假设我们求出了 Q0 ≡ P−1 (mod x⌈N/2⌉)。现在要求 Q1 ≡ P−1

(mod xN )，即求出 P−1 的第 ⌈N/2⌉ 至第 N − 1 项系数。
• Q0 ≡ Q1 (mod x⌈N/2⌉)。

F (Q1) ≡ F (Q0) + F ′(Q0)(Q1 −Q0) +
F ′′(Q0)

2
(Q1 −Q0)

2 + . . .

≡ F (Q0) + F ′(Q0)(Q1 −Q0) ≡ 0 (mod xN )

Q1 ≡ Q0 −
F (Q0)

F ′(Q0)
(mod xN )
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复数 快速傅里叶变换 多项式 例题

多项式求逆

多项式求逆：第三种方法

• F ′(A) = dF
dA (A) = − 1

A2

Q1 ≡ Q0 +Q2
0

(
1

Q0
− P

)
(mod xN )

Q1 ≡ 2Q0 − PQ2
0 (mod xN )

• 可以验证：PQ1 ≡ P (2Q0 − PQ0)
2 ≡ PQ0(2− PQ0) (mod xN )

• PQ0 ≡ 1 (mod x⌈N/2⌉)。所以存在一个多项式 R 使得 PQ0 ≡ 1 + x⌈N/2⌉R ≡ 1
(mod xN )。

• PQ1 ≡
(
1 + x⌈N/2⌉R

) (
1− x⌈N/2⌉R

)
≡ 1−

(
x⌈N/2⌉R

)2 ≡ 1 (mod xN )
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复数 快速傅里叶变换 多项式 例题

多项式求逆

多项式求逆：第三种方法

• 伪代码：
func getInv(P , N):

Result: Q ≡ P−1 (mod xN )
if N = 1 then

return p−1
0

else
M ← ⌈N2 ⌉
Q0 ← getInv(P mod xM ,M)
return Q0(2− PQ0) mod xN

end

• 时间复杂度 T (N) = T
(
N
2

)
+O(N logN)。根据主定理[2]得 T (N) = O(N logN)。
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多项式其他计算方法

1 复数

2 快速傅里叶变换

3 多项式

多项式乘法
多项式求逆
多项式其他计算方法

4 例题
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式除法

• 给定 N 阶多项式 A 和 M (M < N) 阶多项式 B（aN , bM ̸= 0）。求多项式 Q 和
R 使得 A = BQ+R 且 deg(R) < M。
• 可以得出 Q 是一个 N −M 阶多项式，且 qN−M = aN

bM
，随后可以递推出

qN−M−1, qN−M−2, . . . , q0。求出 Q 后即可算出 R = A−BQ。
• 观察到这里是从高到低确定系数。如果沿用多项式求逆的思路，就需要将这两个
多项式的系数颠倒。

• Ā(x) = xNA
(
1
x

)
= xN

N∑
i=0

aix
−i =

N∑
i=0

aix
N−i =

N∑
j=0

aN−jx
j。

• 同理，B̄(x) = xMB
(
1
x

)
，Q̄(x) = xN−MQ

(
1
x

)
且 R̄(x) = xM−1Q

(
1
x

)
。
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式除法

A(x) = B(x)Q(x) +R(x)

xNA

(
1

x

)
= xMB

(
1

x

)
xN−MQ

(
1

x

)
+ xN−M+1 · xM−1R

(
1

x

)
Ā(x) = B̄(x)Q̄(x) + xN−M+1R̄(x)

Ā(x) ≡ B̄(x)Q̄(x) (mod xN−M+1)

Q̄(x) ≡ Ā(x) · (B̄(x))−1 (mod xN−M+1)

• 可以使用多项式求逆求得 Q̄(x)，再颠倒系数得到 Q(x)。时间复杂度为
O(N logN)。
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式快速幂
• 多项式 ln：对于一个多项式 P (x) (p0 = 1)，求 lnP (x)。
• (lnP (x))′ = P ′(x)

P (x)

• lnP (x) =
∫ P ′(x)

P (x) dx（[x0] lnP (x) = 0）
• lnP (x) ≡

∫
P ′(x)(P (x))−1dx (mod xN )

• 多项式 exp：对于一个多项式 P (x) (p0 = 0)，求 exp(P (x)) (mod xN )：

• Q(x) ≡ exp(P (x)) ≡
+∞∑
i=0

P (x)i

i! ≡
N−1∑
i=0

P (x)i

i! (mod xN )

• 设 F (A) = ln(A)− P。所以 F ′(A) = 1
A。

• 牛顿迭代法：Q1 ≡ Q0 −Q0 (ln(Q0)− P ) (mod xN )。
• 多项式快速幂：求 P (x)k (mod xN )。
• 设 P ′(x) = P (x)

p0
。则 [x0]P ′(x) = 1，P (x) = p0P

′(x)。
• P (x)k = pk0P

′(x)k = pk0 exp(k lnP ′(x))。
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式多点求值

• 对于一个 N 阶多项式函数 P (x)。
• 给定 M 个点 (x1, x2, . . . , xM )，求出 P (x1), P (x2), . . . , P (xM )。
• 事实上，P (xk) = P (x) mod (x− xk)。
• 证明：
• 设 Q(x), R 满足 Q(x)(x− xk) +R = P (x)。
• 代入 xk，R = Q(xk)(xk − xk) +R = P (xk)。
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式多点求值

• 可以分治求解。

• 先通过分治计算
M∏
i=1

(x− xi)，并计算出 P (x) mod
(

M∏
i=1

(x− xi)

)
。

• 再自上而下分治。如 solve(l, r)，已有 P (x) mod
(

r∏
i=l

(x− xi)

)
（记为 Pl,r(x)）。

• 设 mid =
⌊
l+r
2

⌋
。

• 计算 Pl,mid = Pl,r(x) mod
(

mid∏
i=l

(x− xi)

)
，并继续对 (l,mid) 分治求解。同理对

(mid+ 1, r) 分治求解。
• 到最后 l = r 时，就得到了该多项式函数在 x = xl 处的取值。

49/78

FFT SPEIT



复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式多点求值

func getProd(l, r):
if l < r then

mid←
⌊
l+r
2

⌋
return Prodl,r ← getProd(l, mid) × getProd(mid+ 1, r)

else
return Prodl,l ← x− xl

end
func getValue(l, r, P):

if l < r then
mid←

⌊
l+r
2

⌋
getValue(l, mid, P mod Prodl,mid)
getValue(mid+ 1, r, P mod Prodmid+1,r)

else
resl ← P

end 50/78
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式多点求值

• 分析复杂度：
• getProd 和 getValue：T (M) = 2T

(
M
2

)
+O(M logM) = O(M log2M)。

• 总时间复杂度为 O(N logN +M log2M)。
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式快速插值

• 给定 N + 1 个点 (x0, y0), (x1, y1), . . . , (xn, yn)（横坐标互不相等）。确定一个 N
阶多项式函数 P 使得 ∀0 ≤ i ≤ n，P (xi) = yi。

拉格朗日插值
• 设

Qk(x) =
∏

0≤i≤N,i ̸=k

(x− xi)

• 唯一的 N 阶多项式函数 P 满足

P (x) =

N∑
k=0

yk
Qk(xk)

Qk(x)
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多项式其他计算方法

多项式快速插值

• 首先我们解决如何计算 Qk(xk)。

• Qk(x) =

N∏
i=0

(x−xi)

x−xk
。

• 当 x = xk 时，Qk(x) 分子分母取值都为 0。

• 洛必达法则：Qk(xk) =

(
N∏
i=0

(x−xi)

)′

(xk)

(x−xk)′(xk)
=

(
N∏
i=0

(x− xi)

)′

(xk)。

•
(

N∏
i=0

(x− xi)

)′

不取决于 k，因此可以 O(N log2N) 多点求值。
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复数 快速傅里叶变换 多项式 例题

多项式其他计算方法

多项式快速插值

• 现在问题在于如何快速求出
N∑
k=0

y′kQk(x)。

• 可以把 Qk(x) 拆为 Prod0,k−1(x) =
k−1∏
i=0

(x− xi) 和

Prodk+1,N (x) =
N∏

i=k+1

(x− xi)。

• 我们可以在分治到 [l, r] 时，同时求出
r∏

k=l

(x− xk) 和
r∑

k=l

y′k
∏

l≤i≤r,i ̸=k

(x− xi)。
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多项式其他计算方法

多项式快速插值

• 合并 [l,mid] 和 [mid+ 1, r] 的答案：
r∏

k=l

(x− xk) =

mid∏
k=l

(x− xk) ·
r∏

k=mid+1

(x− xk)

r∑
k=l

y′k
∏

l≤i≤r,i ̸=k

(x− xi) =

mid∑
k=l

y′k
∏

l≤i≤mid,i ̸=k

(x− xi)

 r∏
i=mid+1

(x− xi)

+

 r∑
k=mid+1

y′k
∏

mid+1≤i≤r,i ̸=k

(x− xi)

mid∏
i=l

(x− xi)

• 时间复杂度也是 O(N log2N)。
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1 复数

2 快速傅里叶变换

3 多项式

4 例题

56/78

FFT SPEIT



复数 快速傅里叶变换 多项式 例题

洛谷 P5850 calc 加强版

• 题目链接
• 给定 m 和 k。
• 一个长度为 n 的序列 (a1, a2, . . . , an) 是合法的，当且仅当：

1 a1, a2, . . . , an 都是 [1, k] 的整数；
2 a1, a2, . . . , an 互不相等。

• ∀1 ≤ n ≤ m，求 ∑
(a1,...,an) 合法

n∏
i=1

ai mod 998244353

• m ≤ 5× 105，1 ≤ m ≤ k ≤ 998244352（需要 O(m logm) 的算法）。
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复数 快速傅里叶变换 多项式 例题

洛谷 P5850 calc 加强版题解[5]

• 因为 a1, . . . , an 互不相等，所以可以先计算出 a1, . . . , an 单调严格递增的答案，
最后乘上 n!。

• 现在 n 的答案为 [xn]
k∏

i=1
(1 + ix)。所以只要求

k∏
i=1

(1 + ix) mod xm+1。

k∏
i=1

(1 + ix) = exp
(

k∑
i=1

ln(1 + ix)

)

= exp

 k∑
i=1

+∞∑
j=1

(−1)j−1ijxj

j


= exp

+∞∑
j=1

xj · (−1)
j−1

j

k∑
i=1

ij


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洛谷 P5850 calc 加强版题解[5]

• 现在瓶颈在于求
∑k

i=1 i
j (1 ≤ j ≤ m)，这是一个典型的自然数幂求和问题。

+∞∑
j=0

xj · 1
j!

k∑
i=1

ij =

k∑
i=1

+∞∑
j=0

(ix)j

j!

=

k∑
i=1

exp(ix) = exp((k + 1)x)− exp(x)
exp(x)− 1

• 所以
k∑

i=1

ij = j![xj ]
exp((k + 1)x)− exp(x)

exp(x)− 1
= j![xj ]

exp((k+1)x)−exp(x)
x

exp(x)−1
x

多项式求逆即可。
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多项式 exp 的意义

问题
• N 个带标号的球分到任意多个不带标号的箱子里。每种箱子至多容 M 个求。

• 给定 f1, f2, . . . , fM

• 假设一种分法的箱子个数为 m，每个箱子中球的个数为 a1, a2, . . . , am，那么设该分法的
权值为

∏m
i=1 fai。

• 求所有分法的权值之和。

• 假设只有 fk ̸= 0，其它的 f 都是 0，也就是每个箱子的大小只能为 k。
• 设球的数量为 n (k | n)，那么这些方案的权值之和是 n!

(k!)n/k(n/k)!
f
n/k
k ，也就是

n![xn] exp
(
fk
k! x

k
)
。
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多项式 exp 的意义

• 现在加上不同大小的箱子。假设大小为 k 的箱子有 ak 个。
• 答案为 ∑

(a1,...,aM ),
∑M

i=1 iai=N

(
N

a1, 2a2, . . . ,MaM

) M∏
i=1

(iai)![x
iai ] exp

(
fi
i!
xi
)

=N !
∑

∏M
i=1 iai=N

[xiai ] exp
(
fi
i!
xi
)

=N ![xN ]

M∏
i=1

exp
(
fi
i!
xi
)

= N ![xN ] exp
(

M∑
i=1

fi
i!
xi

)
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点标号简单无向连通图计数

问题
有 N 个带标号的点，求简单无向连通图个数。
1 简单：没有自环（自己到自己的边），没有重边（不会有两条边连接完全相同的点）。
2 无向：边没有规定方向。
3 连通：对于图中任意一对点，有若干条边将这两个点连接起来。

• 先忽略“连通”的要求。简单无向图，就是决定任意一对点之间有没有边，因此
n 个点的简单无向图个数为 2(

N
2
)。

• 简单无向图可以拆分成若干个简单无向连通图，且这些连通图之间没有边。
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点标号简单无向连通图计数

• 所以把 N 个带标号的点放到若干个箱子中，每个箱子对应一个连通图，一个装
了 m 个点的箱子对应权值为 m 个点的简单无向连通图个数。所有方案的权值之
和就是简单无向图个数。
• 这就与多项式 exp 的意义对应。简单无向连通图个数 EGF 的 exp 就是简单无向
图个数 EGF。求个 ln，最终答案为 N ![xN ] ln

(∑
n≥0

2(
n
2)
n! xn

)
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线性常系数齐次递推

• fn =
∑p

i=1 aifn−i (n > p)。
• 设

A =


ap ap−1 . . . a2 a1
1 0 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0


• 那么 

ap+n

ap+n−1
...

an+1

 = An


ap
ap−1

...
a1


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线性常系数齐次递推

• 求 An 可以用矩阵快速幂做。但是这样时间复杂度是 O(p3 logn)，不能处理 p 比
较大的情况。

Cayley-Hamilton 定理[6]

对于一个 n 阶方阵 A，设它的特征多项式 p(λ) = det(λIn −A)，则 p(A) = O。

• 可以验证：
p(λ) = λp −

p∑
i=1

apλ
p−i

• 要求 fn，就要求 An−p。
• 考虑 xn−p = p(x)Q(x) +R(x)（多项式除法）。那么

An−p = p(A)Q(A) +R(A) = R(A)
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线性常系数齐次递推

• R(x) 是一个 p− 1 阶多项式。设 R(x) =
∑p−1

i=0 rix
i。 fn

...
fn−p+1

 = An−p

fp...
f1

 =

p−1∑
i=0

riA
i

fp...
f1

 =

p−1∑
i=0

ri

fi+p
...

fi+1


• 要求 fn，只用考虑矩阵的第一行：

fn =

p−1∑
i=0

rifi+p

• 快速求出 xn−p mod p(x)：快速幂。
• 计算 xk mod p(x)：若 k 为偶数，则 xk ≡

(
xk/2

)2
(mod p(x))，否则 xk ≡ xk−1x

(mod p(x))。
• 用多项式除法，时间复杂度为 O(p log p logn)。

66/78

FFT SPEIT



复数 快速傅里叶变换 多项式 例题

线性常系数齐次递推

• 快速求出 fi+1, . . . , fi+p−1：
• f 的 OGF：

F (x) =
+∞∑
k=1

fkx
k

∀n ≤ p, fn −
p∑

i=1

aifn−i = 0

F (x)

(
1−

p∑
i=1

aix
i

)
=

p∑
i=1

xi

fi −
i−1∑
j=1

ajfi−j


• 两边同除 1−

∑p
i=1 aix

i，多项式求逆，时间复杂度 O(p log p)。
• 总时间复杂度为 O(p log p logn)。
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求一类微分方程的特解

问题
求

n∑
i=0

aiy
(i) = eαx

 m∑
j=0

bjx
j


形如 eαx 乘上一个多项式的特殊解（an ̸= 0）。

• 先考虑 y = eαxxk 的导数。
• 记

kr =

{∏r−1
i=0 (k − i) (r > 0)

1 (r = 0)

称为 k 的 r 次下降幂。
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求一类微分方程的特解

• 观察

y′ = eαx
(
αxk + kxk−1

)
,

y(2) = eαx
[
α2xk + 2αkxk−1 + k2xk−2

]
,

y(3) = eαx
[
α3xk + 3α2kxk−1 + 3αk2xk−2 + k3xk−3

]
• 可以发现规律：

y(r) = eαx
r∑

i=0

(
r

i

)
αr−ikixk−i

• 可以数学归纳法证明。
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求一类微分方程的特解

• 归纳法证明。
• r = 0 时显然成立。
• 假设 y(r) = eαx

∑r
i=0

(
r
i

)
αr−ikixk−i。

y(r+1) = eαx · α
r∑

i=0

(
r

i

)
αr−ikixk−i + eαx ·

r∑
i=0

(
r

i

)
αr−iki · (k − i)xk−i−1

= eαx

[
r∑

i=0

(
r

i

)
αr+1−ikixk−i +

r+1∑
i=1

(
r

i− 1

)
αr+1−iki−1(k − (i− 1))xk−i

]

= eαx

[
r+1∑
i=0

(
r

i

)
αr+1−ikixk−i +

r+1∑
i=1

(
r

i− 1

)
αr+1−ikixk−i

]

= eαx
r+1∑
i=0

(
r + 1

i

)
αr+1−ikixk−i.

• 因此 r + 1 时也成立。
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求一类微分方程的特解

• 实际上这个系数
(
r
i

)
αr−iki 也可以用组合意义推出来。

•
(
eαxxk

)′
= eαx

(
kxk−1 + αxk

)
。所以对于 eαxxk，求导后有两种可能：

1 x 的次数减 1，也就是 xk → xk−1，系数乘上 k；
2 x 的次数不变，xk → xk，系数乘上 α。

• 经过 r 次求导操作后，xk → xk−i，说明有 i 次操作 1，r − i 次操作 2。
• 对于操作 1，这些系数乘积为 k(k − 1) . . . (k − i+ 1) = ki。
• 对于操作 2，这些系数成绩为 αr−i。
• 从 r 中选 i 个操作 1，有

(
r
i

)
种选法。

• 所以系数为
(
r
i

)
αr−iki。
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求一类微分方程的特解

• 所以 n∑
i=0

aiy
(i) = eαx

n∑
j=0

kjxk−j
n∑

r=0

(
r

j

)
αr−jar

• 设
Cj =

n∑
i=j

(
i

j

)
αi−jai

• 所以
n∑

i=0

aiy
(i) = eαx

k∑
j=0

kjCjx
k−j

• 枚举 l = k − j：
n∑

i=0

aiy
(i) = eαx

k∑
l=0

kk−lCk−lx
l
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求一类微分方程的特解

• 我们取最小的 p 使得 Cp ̸= 0。
• 那么当 y = eαxxk 时，

∑n
i=0 aiy

(i) 中 xk 项到 xk−p+1 项系数都为 0，xk−p 项系
数不为 0。
• 所以要求该微分方程的解，最高次项应该为 eαxxm+p。
• 我们从高位到低位逐位确定，

n∑
i=0

ai(e
αxxm+p)(i) = eαx

m∑
l=0

(m+ p)m+p−lCm+p−lx
l

• 为了让
∑n

i=0 aiy
(i) 的 eαxxm 系数为 bm，eαxxm+p 系数应为 bm

(m+p)pCp
。
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求一类微分方程的特解
bm

(m+ p)pCp
eαxxm+p

• 接下来的 bi (i < m) 应该减掉这一项对它的影响，即

bi ← bi −
bm

(m+ p)pCp
Cm+p−i(m+ p)m+p−i

• 对于新的微分方程，继续求解。
• 设 zp, . . . , zm+p 分别为 eαxxp, . . . , eαxxm+p 项系数。
• 则

zi =
bi−p −

∑m+p
j=i+1 zjCj−i+pj

j−i+p

Cpi
p

=
1

Cpi
p

bi−p −
1

(i− p)!

m+p∑
j=i+1

(zj · j!) · Cj−i+p


• 可以 CDQ 分治 FFT。 74/78
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求一类微分方程的特解

• 未使用 FFT 的 Python 代码
• 也可以用类似的方法求

∑n
i=0 aiy

(i) = P (x) sin(αx) +Q(x) cos(αx) 的特解，但
是要注意 sin(αx) 求导后会影响 cos，反之亦然。
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