
Fast-Fourier Transform
and Applications of Generating Functions

Chengyuan Luo
SJTU-Paris Elite Institute of Technology
December 3, 2022

1/79



Complex Numbers Fast Fourier Transform Polynomials Example Problems

Table of Contents

1 Complex Numbers

2 Fast Fourier Transform

3 Polynomials

4 Example Problems

2/79

FFT SPEIT



Complex Numbers Fast Fourier Transform Polynomials Example Problems

1 Complex Numbers

2 Fast Fourier Transform

3 Polynomials

4 Example Problems

3/79

FFT SPEIT



Complex Numbers Fast Fourier Transform Polynomials Example Problems

Complex Numbers

Definition
A number of the form a+ ib (a, b ∈ R2) is called a complex number, where i is the
imaginary unit with i2 = −1.

• Addition of complex numbers:
(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

• Complex addition satisfies closure, commutativity, and associativity. There exists an
additive identity 0 (∀x ∈ C, x+ 0 = x), and every complex number has an additive
inverse (∀x ∈ C, ∃y ∈ C, x+ y = y + x = 0).
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Complex Numbers

Definition
A number of the form a+ ib (a, b ∈ R2) is called a complex number, where i is the
imaginary unit with i2 = −1.

• Multiplication of complex numbers:
(a+ ib)(c+ id) = ac− bd+ i(ad+ bc)

• Complex multiplication satisfies closure, commutativity, associativity, and
distributivity. There exists a multiplicative identity 1 (∀x ∈ C, 1x = x1 = x), and
every non-zero complex number has a multiplicative inverse
(∀x ∈ C∗, ∃y ∈ C, xy = yx = 1).
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Complex Numbers

• Let z = a+ ib.

Modulus of a Complex Number

|z| =
√
a2 + b2

• If a, b are not both zero,
z =

a√
a2 + b2

+ i
b√

a2 + b2

• We can find θ such that cos(θ) = a√
a2+b2

and sin(θ) = b√
a2+b2

.
• Therefore, we can write z = a+ ib as |z| (cos(θ) + i sin(θ)). This is the polar

coordinate representation of a complex number.
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Complex Numbers

• Therefore, we can write z = a+ ib as |z| (cos(θ) + i sin(θ)). This is the polar
coordinate representation of a complex number.

Euler’s Formula

eiθ = cos(θ) + i sin(θ)

• So we can express z in the form |z|eiθ.
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Roots of Unity

n-th Roots of Unity
The complex roots z of the equation

zn = 1 (n ∈ N∗)

are called the n-th roots of unity.

• It can be verified that there are exactly n n-th roots of unity:
ei

2π
n
k (k = 0, 1, . . . , n− 1)

• Because
(
ei

2π
n
k
)n

= ei2πk = cos(2πk) + i sin(2πk) = 1

• Let ωn = ei
2π
n . Properties:

1 ωk
n = ω2k

2n

2 ωk
n = ωk mod n

n 8/79
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Fourier Transform

Fourier Transform

• From Chapter 4 of Signaux (Signal Theory) in the first semester of sophomore year:

Fourier Transform
For a function f with period T , find the Fourier series:

C̃n =
2

T

∫ t0+T

t0

f(t) exp
(
−j 2π

T
nt

)
dt.

We can derive:

f(t) = Re
(

+∞∑
n=0

C̃n exp
(
j
2π

T
nt

))
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Discrete Fourier Transform

Discrete Fourier Transform

• Discrete Fourier Transform: Discrete Fourier Transform (Transformation de Fourier
discrète)

Discrete Fourier Transform
For a sequence (sn)n∈J0,N−1K, its discrete Fourier transform sequence (Sn) satisfies:
∀ n ∈ J0, N − 1K,

Sn =

N−1∑
k=0

sk exp
(
−i2π

N
kn

)
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Discrete Fourier Transform

Discrete Fourier Transform

Continuous Fourier Transform Discrete Fourier Transform
C̃n = 2

T

∫ t0+T
t0

f(t) exp (−jnωt) dt Sn =
∑N−1

k=0 sk exp
(
−i2πN kn

)
T N
n n
t k
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Discrete Fourier Transform

Discrete Fourier Transform

Inverse Discrete Fourier Transform
Inverse transformation (Inverse DFT, or IDFT)

sk =
1

N

N−1∑
n=0

Sn exp
(
i
2π

N
kn

)
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Discrete Fourier Transform

Discrete Fourier Transform

Continuous Fourier Transform Discrete Fourier Transform
C̃n = 2

T

∫ t0+T
t0

f(t) exp (−jnωt) dt Sn =
∑N−1

k=0 sk exp
(
−i2πN kn

)
T N
n n
t k

f(t) = Re
(∑+∞

n=0 C̃n exp
(
j 2πT nt

))
sk = 1

N

∑N−1
n=0 Sn exp

(
i2πN kn

)
T N
t k
n n
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Discrete Fourier Transform

Discrete Fourier Transform
• Proving the inverse transformation:
• Let ω = exp

(
i2πN
)
. ∀ k ∈ Z,

N−1∑
n=0

ωkn =

N−1∑
n=0

(ωk)
n =

{
N, N | k,
1−ωkN

1−ωk =
1−exp(i 2πN kN)

1−ωk = 0, N ∤ k
• ∀ 0 ≤ k < N，

sk =
1

N

N−1∑
n=0

ωknSn =
1

N

N−1∑
n=0

ωkn
N−1∑
r=0

ω−rnsr

=
1

N

N−1∑
r=0

sr

N−1∑
n=0

ω(k−r)n =
1

N

N−1∑
r=0

sr[k = r]N = sk
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Discrete Fourier Transform

Discrete Fourier Transform

• ∀ 0 ≤ n < N，

Sn =

N−1∑
k=0

ω−knsk =

N−1∑
k=0

ω−kn 1

N

N−1∑
r=0

ωkrSr

=

N−1∑
r=0

Sr
1

N

N−1∑
k=0

ω(r−n)k =

N−1∑
r=0

Sr
1

N
[r = n]N = Sn

IDFT ◦DFT = DFT ◦ IDFT = idCJ0,N−1K .
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Fast Fourier Transform

Fast Fourier Transform

• If we perform DFT according to the definition, calculating Sn =
∑N−1

k=0 ω−knsk for
each n ∈ J0, N − 1K, we need to first enumerate n ∈ J0, N − 1K and then
enumerate k ∈ J0, N − 1K, resulting in a time complexity of O(N2). The same
applies to IDFT.
• There exists a faster method, the Fast Fourier Transform (FFT).
• One common implementation is the Cooley-Tukey algorithm. Using a

divide-and-conquer approach, it improves the time complexity to O(N logN) (with
log base 2).
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Fast Fourier Transform

Cooley-Tukey

• Consider the case N = 4 with s0, s1, s2, s3 (ω = exp
(
i2π4
)
).

• We split (s0, s1, s2, s3) into two sequences: (t0 = s0, t1 = s2) and
(t′0 = s1, t

′
1 = s3), and perform Fourier transforms on each sequence separately,

obtaining T0 = s0 + s2, T1 = s0 + ω−2s2, T ′
0 = s1 + s3, T ′

1 = s1 + ω−2s3.
• Now we want to compute the Fast Fourier Transform of (s0, s1, s2, s3):

S0 = s0 + s1 + s2 + s3 = T0 + T ′
0,

S2 = s0 + ω−2s1 + ω−4s2 + ω−6s3 = T0 + ω−2T ′
0 = T0 − T ′

0

S1 = s0 + ω−1s1 + ω−2s2 + ω−3s3 = T1 + ω−1T ′
1,

S3 = s0 + ω−3s1 + ω−6s3 + ω−9s3 = T1 + ω−3T ′
1 = T1 − ω−1T ′

1.
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Fast Fourier Transform

Cooley-Tukey

• Extending to the case N = 8 (ω = exp
(
i2π8
)
):

S0 = (s0 + s1 + s2 + s3) + (s4 + s5 + s6 + s7) = T0 + T ′
0,

S4 = (s0 + s2 + s4 + s6) + ω−4(s1 + s3 + s5 + s7) = T0 + ω−4T ′
0 = T0 − T ′

0,

S1 = (s0 + ω−2s2 + ω−4s4 + ω−6s6) + ω−1(s1 + ω−2s3 + ω−4s5 + ω−6s7) = T1 + ω−1T ′
1,

S5 = (s0 + ω−2s2 + ω−4s4 + ω−6s6) + ω−5(s1 + ω−2s3 + ω−4s5 + ω−6s7) = T1 − ω−1T ′
1,

S2 = (s0 + ω−4s2 + s4 + ω−4s6) + ω−2(s1 + ω−4s3 + s5 + ω−4s7) = T2 + ω−2T ′
2,

S6 = (s0 + ω−4s2 + s4 + ω−4s6) + ω−6(s1 + ω−4s3 + s5 + ω−4s7) = T2 − ω−2T ′
2,

S3 = (s0 + ω−6s2 + ω−4s4 + ω−2s6) + ω−3(s1 + ω−6s3 + ω−4s5 + ω−2s7) = T3 + ω−3T ′
3,

S7 = (s0 + ω−6s2 + ω−4s4 + ω−2s6) + ω−7(s1 + ω−6s3 + ω−4s5 + ω−2s7) = T3 − ω−3T ′
3.

22/79

FFT SPEIT



Complex Numbers Fast Fourier Transform Polynomials Example Problems

Fast Fourier Transform

Cooley-Tukey

• Assume N = 2r. Let M = N
2 = 2r−1.

• We have already performed Fourier transforms on (s0, s2, . . . , sN−2) and
(s1, s3, . . . , sN−1) separately, obtaining (T0, T1, . . . , TM−1) and (T ′

0, T
′
1, . . . , T

′
M−1).

Tk =

M−1∑
n=0

s2n exp
(
−i2π

M
kn

)

T ′
k =

M−1∑
n=0

s2n+1 exp
(
−i2π

M
kn

)
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Fast Fourier Transform

Cooley-Tukey

Sk =

N−1∑
n=0

sn exp
(
−i2π

N
kn

)

=

M−1∑
n=0

s2n exp
(
−i2π

N
k · 2n

)
+

M−1∑
n=0

s2n+1 exp
(
−i2π

N
k · (2n+ 1)

)

=

M−1∑
n=0

s2n exp
(
−i2π

M
kn

)
+ exp

(
−i2π

N
k

)M−1∑
n=0

s2n+1 exp
(
−i2π

M
kn

)
= Tk + T ′

k exp
(
−i2π k

N

)
• Or:

Sk =

{
Tk + T ′

k exp
(
−i2π k

N

)
, k < M,

Tk−M − T ′
k−M exp

(
−i2π k−M

N

)
, k ≥M.
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Fast Fourier Transform

Butterfly Transformation

图: Butterfly Transformation[1] 25/79
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Fast Fourier Transform

Pseudocode
func dft(s0, s1, . . . , sN−1):

Result: (S0, S1, . . . , SN−1)
if N = 1 then

return (s0)
else

M ← N
2

(T0, T1, . . . , TM−1)← dft(s0, s2, . . . , sN−2)
(T ′

0, T
′
1, . . . , T

′
M−1)← dft(s1, s3, . . . , sN−1)

for k ← 0 to M − 1 do
Sk ← Tk + Tk+M exp

(
−i2π k

N

)
Sk+M ← Tk − Tk+M exp

(
−i2π k

N

)
end
return (S0, S1, . . . , SN−1)

end
26/79
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Fast Fourier Transform

Cooley-Tukey
• For the inverse DFT: we only need to change exp

(
−i2π k

N

)
to exp

(
i2π k

N

)
.

func idft(s0, s1, . . . , sN−1):
Result: (S0, S1, . . . , SN−1)
if N = 1 then

return (s0)
else

M ← N
2

(T0, T1, . . . , TM−1)← idft(s0, s2, . . . , sN−2)
(T ′

0, T
′
1, . . . , T

′
M−1)← idft(s1, s3, . . . , sN−1)

for k ← 0 to M − 1 do
Sk ← Tk + Tk+M exp

(
+i2π k

N

)
Sk+M ← Tk − Tk+M exp

(
+i2π k

N

)
end
return (S0, S1, . . . , SN−1)

end 27/79
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Fast Fourier Transform

Cooley-Tukey

• Analyzing its time complexity.
• Let T (n) represent the number of operations for performing FFT on a sequence of

length n.
• T (n) = 2T

(
n
2

)
+O(n), where O(n) means the number of operations can be

approximated as a constant multiplied by n.
• From the Master Theorem[2], we get T (n) = O(n logn), which is significantly more

efficient than O(n2).
• This is FFT with base 2 (splitting into two halves each time), but other bases or

mixed bases can also be used.
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Polynomial Multiplication

Polynomial Multiplication
• Let’s observe the Fourier transform formula again:

Sn =

N−1∑
k=0

sk exp
(
−i2π

N
kn

)

=

N−1∑
k=0

sk

(
exp

(
−i2π

N
n

))k

• Define
F (x) =

N−1∑
i=0

six
i

• Then
Sn = F

(
exp

(
−i2π

N
n

))
31/79
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Polynomial Multiplication

Polynomial Multiplication
• Therefore, the discrete Fourier transform can obtain the values of a function at

points x = exp
(
−i2πN n

)
(0 ≤ n < N).

• The inverse discrete Fourier transform can recover the original function from its
values at points x = exp

(
−i2πN n

)
.

• An N-th degree polynomial function can be uniquely determined by knowing its
values at N+1 points.
• For an M-th degree function F (x) and an R-th degree function G(x), their product
(FG)(x) = F (x)G(x) is an (M +R)-th degree function.
• We choose N = 2⌈log2 (M+R+1)⌉. We perform discrete Fourier transforms to obtain

the values of F and G at points x = exp
(
−i2πN n

)
(0 ≤ n < N).

• ∀x ∈ C, (FG)(x) = F (x)G(x). Therefore, we obtain the values of FG at points
x = exp

(
−i2πN n

)
. After inverse transformation, we get the polynomial FG.
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Polynomial Multiplication

Polynomial Multiplication

• This is equivalent to quickly calculating the convolution of two sequences:

cn =

n∑
k=0

akbn−k

• The time complexity is O(n logn).
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Polynomial Multiplication

Polynomial Multiplication
• In practical numerical calculations, since both the real and imaginary parts of the

roots of unity are decimal numbers, errors are unavoidable.
• In programming contests, we generally use p = 998244353 as the modulus:
• 998244353 is a prime number, and Z/pZ is a field (we can define addition, subtraction,

multiplication, and division; every non-zero x has a multiplicative inverse x−1 such that
x · x−1 ≡ 1 (mod p), because according to Bézout’s identity, the equation
x · x−1 − p · y = 1 has a solution).

• 998244353 has a primitive root 3 (∀r ∈ J1, p− 2K, 3r ̸≡ 1 (mod p)). Therefore, 3
satisfies the properties of complex roots of unity. (Euler’s theorem: ∀(a, p) = 1,
aφ(p) ≡ 1 (mod p))

• 998244353 = 7× 17× 223 + 1, and 223 | φ(p) = p− 1. For any N = 2r(r ≤ 23), we
can compute 3

p−1
N as a complex root of unity.

• Fast Number Theoretic Transform (Number-theoretic transform).
• There are also fast number theoretic transform algorithms with other moduli, such

as the MTT algorithm named after Mao Xiao[3]. 34/79
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Polynomial Inversion

Polynomial Inversion
• For N ∈ N∗ and a polynomial P (x) (p0 ̸= 0), find a polynomial Q(x) such that

P (x)Q(x) ≡ 1 (mod xN ).
• Let p0, p1, . . . , pN−1 be the coefficients of x0, x1, . . . , xN−1 in P (x). Similarly for

q0, q1, . . . , qN−1.
First Method
• q0 = 1

p0
;

• Recursively compute qk (1 ≤ k < N):
k∑

i=0

piqk−i = p0qk +

k∑
i=1

piqk−i = 0

qk = −

(
k∑

i=1

piqk−i

)
/p0

• The algorithm complexity is O(N2). 36/79
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Polynomial Inversion

Polynomial Inversion: Second Method
• The above equation is in the form of a convolution.
• We want to optimize using FFT, but we need to find the values of q0, q1, . . . , qi−1

before we can find qi.
• We use the idea of CDQ divide and conquer (Chen Danqi’s divide and conquer[4])

to solve in batches and perform convolution.
Polynomial Inversion Using Divide and Conquer
• For example, we now need to compute q0, q1, . . . , qn.
• Define tk =

∑k
i=1 piqk−i. Then qk = −tk/p0. So the key is to compute tk.

• Assume we already have q0, q1, . . . , qm (this step can be considered as recursive solving).
• First consider the contribution of q0, . . . , qm to tk (m+ 1 ≤ k ≤ n). That is, we compute∑

1≤i≤k,k−i≤m

piqk−i. This is obviously in the form of a convolution and can be accelerated

using FFT.
• Then recursively solve for qm+1, qm+2, . . . , qn.
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Polynomial Inversion

Polynomial Inversion: Second Method

CDQ Divide and Conquer
Suppose a sequence (f0, f1, . . . , fn) has a recurrence relation.
func solve(l, r):

Result: Find fl, fl+1, . . . , fr
if l < r then

mid←
⌊
l+r
2

⌋
solve(l, mid)
Calculate the influence of fl, . . . , fmid on fmid+1, . . . , fr
solve(mid+ 1, r)

else
Find fl

end
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Polynomial Inversion

Polynomial Inversion: Second Method

• Correctness: ∀i, before finding fi, we have considered the influence of
f0, f1, . . . , fi−1 on fi.
• Time Efficiency:
• The influence of fl, . . . , fmid on fmid+1, . . . , fr is a convolution, so it can be

accelerated using FFT.
• Time complexity T (n) = 2T

(
n
2

)
+O(n logn). According to the Master Theorem[2], we

get T (n) = O(n log2 n).
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Polynomial Inversion

Polynomial Inversion: Third Method

Taylor Expansion
• If a function f(x) is n-times differentiable at a point x0 in its domain, then

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 + . . .

+
f (n)(x0)

n!
(x− x0)

n + ox→x0 ((x− x0)
n)

=

n∑
i=0

f (i)(x0)

i!
(x− x0)

i + ox→x0 ((x− x0)
n)

• This means that in the neighborhood of x0, we can approximate f(x) as a
polynomial.
• It can be verified that the original function and its Taylor expansion have the same

derivatives from order 0 to n. 40/79
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Polynomial Inversion

Polynomial Inversion: Third Method

Newton’s Method
• We want to find a zero of a function f(x), i.e., f(x0) = 0.
• We use an iterative method to continuously approximate the zero.
• Let x1 be the current iterated point. We perform a first-order Taylor expansion of f

at x1.
f(x) = f(x1) + f ′(x1)(x− x1) + ox→x1(x− x0)

Solving
f(x1) + f ′(x1)(x− x1) = 0

x = x1 −
f(x1)

f ′(x1)

• x1 ← x1 − f(x1)
f ′(x1)

and iterate again.
41/79
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Polynomial Inversion

Polynomial Inversion: Third Method

• Now we want to find Q(x) ≡ (P (x))−1 (mod xN ) (we will omit (x) from now on).
• We define the function F (A) = 1

A − P . Then F (Q) ≡ 0 (mod xN ).
• Consider Newton’s method: Suppose we have found Q0 ≡ P−1 (mod x⌈N/2⌉).

Now we want to find Q1 ≡ P−1 (mod xN ), i.e., find the coefficients of P−1 from
⌈N/2⌉ to N − 1.
• Q0 ≡ Q1 (mod x⌈N/2⌉).

F (Q1) ≡ F (Q0) + F ′(Q0)(Q1 −Q0) +
F ′′(Q0)

2
(Q1 −Q0)

2 + . . .

≡ F (Q0) + F ′(Q0)(Q1 −Q0) ≡ 0 (mod xN )

Q1 ≡ Q0 −
F (Q0)

F ′(Q0)
(mod xN )
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Polynomial Inversion

Polynomial Inversion: Third Method

• F ′(A) = dF
dA (A) = − 1

A2

Q1 ≡ Q0 +Q2
0

(
1

Q0
− P

)
(mod xN )

Q1 ≡ 2Q0 − PQ2
0 (mod xN )

• We can verify: PQ1 ≡ P (2Q0 − PQ0)
2 ≡ PQ0(2− PQ0) (mod xN )

• PQ0 ≡ 1 (mod x⌈N/2⌉). So there exists a polynomial R such that
PQ0 ≡ 1 + x⌈N/2⌉R ≡ 1 (mod xN ).
• PQ1 ≡

(
1 + x⌈N/2⌉R

) (
1− x⌈N/2⌉R

)
≡ 1−

(
x⌈N/2⌉R

)2 ≡ 1 (mod xN )
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Polynomial Inversion

Polynomial Inversion: Third Method
• Pseudocode:

func getInv(P , N):
Result: Q ≡ P−1 (mod xN )
if N = 1 then

return p−1
0

else
M ← ⌈N2 ⌉
Q0 ← getInv(P mod xM ,M)
return Q0(2− PQ0) mod xN

end
• Time complexity T (N) = T

(
N
2

)
+O(N logN). According to the Master

Theorem[2], we get T (N) = O(N logN).
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Other Polynomial Computation Methods

1 Complex Numbers

2 Fast Fourier Transform

3 Polynomials

Polynomial Multiplication
Polynomial Inversion
Other Polynomial Computation Methods

4 Example Problems

45/79

FFT SPEIT



Complex Numbers Fast Fourier Transform Polynomials Example Problems

Other Polynomial Computation Methods

Polynomial Division

• Given an N-th degree polynomial A and an M-th degree polynomial B (M < N ,
aN , bM ̸= 0), find polynomials Q and R such that A = BQ+R and deg(R) < M .
• We can conclude that Q is an (N −M)-th degree polynomial, with qN−M = aN

bM
,

and then we can recursively derive qN−M−1, qN−M−2, . . . , q0. After finding Q, we
can compute R = A−BQ.
• We observe that the coefficients are determined from highest to lowest degree. If

we follow the idea of polynomial inversion, we need to reverse the coefficients of
these two polynomials.

• Ā(x) = xNA
(
1
x

)
= xN

N∑
i=0

aix
−i =

N∑
i=0

aix
N−i =

N∑
j=0

aN−jx
j .

• Similarly, B̄(x) = xMB
(
1
x

)
, Q̄(x) = xN−MQ

(
1
x

)
, and R̄(x) = xM−1Q

(
1
x

)
.
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Other Polynomial Computation Methods

Polynomial Division

A(x) = B(x)Q(x) +R(x)

xNA

(
1

x

)
= xMB

(
1

x

)
xN−MQ

(
1

x

)
+ xN−M+1 · xM−1R

(
1

x

)
Ā(x) = B̄(x)Q̄(x) + xN−M+1R̄(x)

Ā(x) ≡ B̄(x)Q̄(x) (mod xN−M+1)

Q̄(x) ≡ Ā(x) · (B̄(x))−1 (mod xN−M+1)

• We can use polynomial inversion to find Q̄(x), then reverse the coefficients to get
Q(x). The time complexity is O(N logN).
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Other Polynomial Computation Methods

Polynomial Fast Exponentiation
• Polynomial ln: For a polynomial P (x) (p0 = 1), find lnP (x).
• (lnP (x))′ = P ′(x)

P (x)

• lnP (x) =
∫ P ′(x)

P (x) dx ([x0] lnP (x) = 0)
• lnP (x) ≡

∫
P ′(x)(P (x))−1dx (mod xN )

• Polynomial exp: For a polynomial P (x) (p0 = 0), find exp(P (x)) (mod xN ):
• Q(x) ≡ exp(P (x)) ≡

+∞∑
i=0

P (x)i

i! ≡
N−1∑
i=0

P (x)i

i! (mod xN )

• Define F (A) = ln(A)− P . So F ′(A) = 1
A .

• Newton’s method: Q1 ≡ Q0 −Q0 (ln(Q0)− P ) (mod xN ).
• Polynomial fast exponentiation: Find P (x)k (mod xN ).
• Define P ′(x) = P (x)

p0
. Then [x0]P ′(x) = 1 and P (x) = p0P

′(x).
• P (x)k = pk0P

′(x)k = pk0 exp(k lnP ′(x)).
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Other Polynomial Computation Methods

Polynomial Multi-point Evaluation

• For an N-th degree polynomial function P (x).
• Given M points (x1, x2, . . . , xM ), find P (x1), P (x2), . . . , P (xM ).
• In fact, P (xk) = P (x) mod (x− xk).
• Proof:
• Let Q(x), R satisfy Q(x)(x− xk) +R = P (x).
• Substituting xk, we get R = Q(xk)(xk − xk) +R = P (xk).
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Other Polynomial Computation Methods

Polynomial Multi-point Evaluation

• We can solve this using divide and conquer.
• First, we compute

∏M
i=1(x− xi) using divide and conquer, and then compute

P (x) mod
(∏M

i=1(x− xi)
)

.
• Then we perform top-down divide and conquer. For example, solve(l, r) has

P (x) mod (
∏r

i=l(x− xi)) (denoted as Pl,r(x)).
• Let mid =

⌊
l+r
2

⌋
.

• Compute Pl,mid = Pl,r(x) mod
(∏mid

i=l (x− xi)
)

, and continue the divide and
conquer for (l,mid). Similarly for (mid+ 1, r).
• When l = r, we get the value of the polynomial function at x = xl.
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Other Polynomial Computation Methods

Polynomial Multi-point Evaluation
func getProd(l, r):

if l < r then
mid←

⌊
l+r
2

⌋
return Prodl,r ← getProd(l, mid) × getProd(mid+ 1, r)

else
return Prodl,l ← x− xl

end
func getValue(l, r, P):

if l < r then
mid←

⌊
l+r
2

⌋
getValue(l, mid, P mod Prodl,mid)
getValue(mid+ 1, r, P mod Prodmid+1,r)

else
resl ← P
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Other Polynomial Computation Methods

Polynomial Multi-point Evaluation

• Complexity analysis:
• getProd and getValue: T (M) = 2T

(
M
2

)
+O(M logM) = O(M log2M).

• The total time complexity is O(N logN +M log2M).
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Other Polynomial Computation Methods

Polynomial Fast Interpolation

• Given N+1 points (x0, y0), (x1, y1), . . . , (xn, yn) (with distinct x-coordinates),
determine an N-th degree polynomial function P such that ∀0 ≤ i ≤ n, P (xi) = yi.

Lagrange Interpolation
• Define

Qk(x) =
∏

0≤i≤N,i ̸=k

(x− xi)

• The unique N-th degree polynomial function P satisfies

P (x) =

N∑
k=0

yk
Qk(xk)

Qk(x)
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Other Polynomial Computation Methods

Polynomial Fast Interpolation

• First, we solve how to compute Qk(xk).

• Qk(x) =

N∏
i=0

(x−xi)

x−xk
.

• When x = xk, both the numerator and denominator of Qk(x) are 0.

• L’Hôpital’s rule: Qk(xk) =

(
N∏
i=0

(x−xi)

)′

(xk)

(x−xk)′(xk)
=

(
N∏
i=0

(x− xi)

)′

(xk).

•
(

N∏
i=0

(x− xi)

)′

does not depend on k, so we can perform multi-point evaluation in

O(N log2N) time.
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Other Polynomial Computation Methods

Polynomial Fast Interpolation

• Now the problem is how to quickly find
N∑
k=0

y′kQk(x).

• We can split Qk(x) into Prod0,k−1(x) =
k−1∏
i=0

(x− xi) and

Prodk+1,N (x) =
N∏

i=k+1

(x− xi).

• When we divide and conquer to [l, r], we can simultaneously find
r∏

k=l

(x− xk) and
r∑

k=l

y′k
∏

l≤i≤r,i ̸=k

(x− xi).
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Other Polynomial Computation Methods

Polynomial Fast Interpolation

• Merge the answers for [l,mid] and [mid+ 1, r]:
r∏

k=l

(x− xk) =

mid∏
k=l

(x− xk) ·
r∏

k=mid+1

(x− xk)

r∑
k=l

y′k
∏

l≤i≤r,i ̸=k

(x− xi) =

mid∑
k=l

y′k
∏

l≤i≤mid,i ̸=k

(x− xi)

 r∏
i=mid+1

(x− xi)

+

 r∑
k=mid+1

y′k
∏

mid+1≤i≤r,i ̸=k

(x− xi)

mid∏
i=l

(x− xi)

• The time complexity is also O(N log2N).
56/79

FFT SPEIT



Complex Numbers Fast Fourier Transform Polynomials Example Problems

1 Complex Numbers

2 Fast Fourier Transform

3 Polynomials

4 Example Problems
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Luogu P5850 calc Enhanced Version

• Problem Link
• Given m and k.
• A sequence (a1, a2, . . . , an) of length n is valid if and only if:

1 a1, a2, . . . , an are all integers in [1, k];
2 a1, a2, . . . , an are distinct.

• For ∀1 ≤ n ≤ m, find ∑
(a1,...,an) valid

n∏
i=1

ai mod 998244353

• m ≤ 5× 105, 1 ≤ m ≤ k ≤ 998244352 (requires an O(m logm) algorithm).

58/79

FFT SPEIT

https://www.luogu.com.cn/problem/P5850


Complex Numbers Fast Fourier Transform Polynomials Example Problems

Luogu P5850 calc Enhanced Version Solution[5]

• Since a1, . . . , an are distinct, we can first compute the answer for strictly increasing
a1, . . . , an, then multiply by n!.
• The answer for n is [xn]

k∏
i=1

(1 + ix). So we just need
k∏

i=1
(1 + ix) mod xm+1.

k∏
i=1

(1 + ix) = exp
(

k∑
i=1

ln(1 + ix)

)

= exp

 k∑
i=1

+∞∑
j=1

(−1)j−1ijxj

j


= exp

+∞∑
j=1

xj · (−1)
j−1

j

k∑
i=1

ij


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Luogu P5850 calc Enhanced Version Solution[5]

• Now the bottleneck is to compute
∑k

i=1 i
j (1 ≤ j ≤ m), which is a typical problem

of summing powers of natural numbers.

+∞∑
j=0

xj · 1
j!

k∑
i=1

ij =
k∑

i=1

+∞∑
j=0

(ix)j

j!

=

k∑
i=1

exp(ix) = exp((k + 1)x)− exp(x)
exp(x)− 1

• Therefore
k∑

i=1

ij = j![xj ]
exp((k + 1)x)− exp(x)

exp(x)− 1
= j![xj ]

exp((k+1)x)−exp(x)
x

exp(x)−1
x

We can use polynomial inversion.
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The Meaning of Polynomial exp

Problem
• N labeled balls are divided into any number of unlabeled boxes. Each box can hold at most

M balls.
• Given f1, f2, . . . , fM

• Suppose a division has m boxes, and the number of balls in each box is a1, a2, . . . , am,
then the weight of this division is

∏m
i=1 fai .

• Find the sum of weights of all divisions.

• Assume only fk ̸= 0 and all other f are 0, meaning each box can only have size k.
• Let the number of balls be n (k | n), then the sum of weights of these schemes is

n!
(k!)n/k(n/k)!

f
n/k
k , which is n![xn] exp

(
fk
k! x

k
)

.
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The Meaning of Polynomial exp

• Now add boxes of different sizes. Assume there are ak boxes of size k.
• The answer is ∑

(a1,...,aM ),
∑M

i=1 iai=N

(
N

a1, 2a2, . . . ,MaM

) M∏
i=1

(iai)![x
iai ] exp

(
fi
i!
xi
)

=N !
∑

∏M
i=1 iai=N

[xiai ] exp
(
fi
i!
xi
)

=N ![xN ]

M∏
i=1

exp
(
fi
i!
xi
)

= N ![xN ] exp
(

M∑
i=1

fi
i!
xi

)
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Counting Labeled Simple Undirected Connected Graphs

Problem
There are N labeled points, find the number of simple undirected connected graphs.
1 Simple: no self-loops (edges from a point to itself), no multiple edges (no two edges

connecting exactly the same pair of points).
2 Undirected: edges have no specified direction.
3 Connected: for any pair of points in the graph, there are several edges connecting these two

points.

• First, ignore the ”connected” requirement. A simple undirected graph is just
deciding whether there is an edge between any pair of points, so the number of
simple undirected graphs with n points is 2(

N
2
).

• A simple undirected graph can be split into several simple undirected connected
graphs, and there are no edges between these connected graphs.
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Counting Labeled Simple Undirected Connected Graphs

• So place N labeled points into several boxes, each box corresponding to a
connected graph, and a box containing m points corresponds to the number of
simple undirected connected graphs with m points. The sum of weights of all
schemes is the number of simple undirected graphs.
• This corresponds to the meaning of polynomial exp. The exp of the EGF of the

number of simple undirected connected graphs is the EGF of the number of simple
undirected graphs. Taking the ln, the final answer is N ![xN ] ln

(∑
n≥0

2(
n
2)
n! xn

)
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Linear Constant Coefficient Homogeneous Recurrence

• fn =
∑p

i=1 aifn−i (n > p).
• Let

A =


ap ap−1 . . . a2 a1
1 0 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0


• Then 

ap+n

ap+n−1
...

an+1

 = An


ap
ap−1

...
a1


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Linear Constant Coefficient Homogeneous Recurrence
• We can compute An using matrix exponentiation. But this has a time complexity

of O(p3 logn), which cannot handle cases where p is large.

Cayley-Hamilton Theorem[6]

For an n× n square matrix A, let its characteristic polynomial be
p(λ) = det(λIn −A), then p(A) = O.

• It can be verified that:
p(λ) = λp −

p∑
i=1

apλ
p−i

• To find fn, we need to find An−p.
• Consider xn−p = p(x)Q(x) +R(x) (polynomial division). Then

An−p = p(A)Q(A) +R(A) = R(A)

66/79

FFT SPEIT



Complex Numbers Fast Fourier Transform Polynomials Example Problems

Linear Constant Coefficient Homogeneous Recurrence
• R(x) is a polynomial of degree p− 1. Let R(x) =

∑p−1
i=0 rix

i. fn
...

fn−p+1

 = An−p

fp...
f1

 =

p−1∑
i=0

riA
i

fp...
f1

 =

p−1∑
i=0

ri

fi+p
...

fi+1


• To find fn, we only need to consider the first row of the matrix:

fn =

p−1∑
i=0

rifi+p

• Quickly find xn−p mod p(x): fast exponentiation.
• Compute xk mod p(x): if k is even, then xk ≡

(
xk/2

)2
(mod p(x)), otherwise

xk ≡ xk−1x (mod p(x)).
• Using polynomial division, the time complexity is O(p log p logn).
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Linear Constant Coefficient Homogeneous Recurrence
• Quickly find fi+1, . . . , fi+p−1:
• OGF of f :

F (x) =

+∞∑
k=1

fkx
k

∀n ≤ p, fn −
p∑

i=1

aifn−i = 0

F (x)

(
1−

p∑
i=1

aix
i

)
=

p∑
i=1

xi

fi −
i−1∑
j=1

ajfi−j


• Divide both sides by 1−

∑p
i=1 aix

i, using polynomial inversion, with time complexity
O(p log p).

• The total time complexity is O(p log p logn).
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Finding Particular Solutions for a Class of Differential Equations

Problem
Find

n∑
i=0

aiy
(i) = eαx

 m∑
j=0

bjx
j


a particular solution of the form eαx multiplied by a polynomial (an ̸= 0).

• First consider the derivative of y = eαxxk.
• Define

kr =

{∏r−1
i=0 (k − i) (r > 0)

1 (r = 0)

called the r-th falling factorial of k.
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Finding Particular Solutions for a Class of Differential Equations

• Observe
y′ = eαx

(
αxk + kxk−1

)
,

y(2) = eαx
[
α2xk + 2αkxk−1 + k2xk−2

]
,

y(3) = eαx
[
α3xk + 3α2kxk−1 + 3αk2xk−2 + k3xk−3

]
• We can find the pattern:

y(r) = eαx
r∑

i=0

(
r

i

)
αr−ikixk−i

• This can be proven by mathematical induction.
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Finding Particular Solutions for a Class of Differential Equations
• Proof by induction.
• Clearly true when r = 0.
• Assume y(r) = eαx

∑r
i=0

(
r
i

)
αr−ikixk−i.

y(r+1) = eαx · α
r∑

i=0

(
r

i

)
αr−ikixk−i + eαx ·

r∑
i=0

(
r

i

)
αr−iki · (k − i)xk−i−1

= eαx

[
r∑

i=0

(
r

i

)
αr+1−ikixk−i +

r+1∑
i=1

(
r

i− 1

)
αr+1−iki−1(k − (i− 1))xk−i

]

= eαx

[
r+1∑
i=0

(
r

i

)
αr+1−ikixk−i +

r+1∑
i=1

(
r

i− 1

)
αr+1−ikixk−i

]

= eαx
r+1∑
i=0

(
r + 1

i

)
αr+1−ikixk−i.

• Therefore, it also holds for r + 1.
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Finding Particular Solutions for a Class of Differential Equations
• In fact, this coefficient

(
r
i

)
αr−iki can also be derived using combinatorial meaning.

•
(
eαxxk

)′
= eαx

(
kxk−1 + αxk

)
. So for eαxxk, there are two possibilities after

differentiation:
1 The degree of x decreases by 1, i.e., xk → xk−1, and the coefficient is multiplied by k;
2 The degree of x remains unchanged, xk → xk, and the coefficient is multiplied by α.

• After r differentiation operations, xk → xk−i, which means there are i operations
of type 1 and r − i operations of type 2.
• For operations of type 1, the product of these coefficients is
k(k − 1) . . . (k − i+ 1) = ki.
• For operations of type 2, the product of these coefficients is αr−i.
• There are

(
r
i

)
ways to choose i operations of type 1 from r operations.

• So the coefficient is
(
r
i

)
αr−iki.
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Finding Particular Solutions for a Class of Differential Equations
• Therefore n∑

i=0

aiy
(i) = eαx

n∑
j=0

kjxk−j
n∑

r=0

(
r

j

)
αr−jar

• Define
Cj =

n∑
i=j

(
i

j

)
αi−jai

• Therefore n∑
i=0

aiy
(i) = eαx

k∑
j=0

kjCjx
k−j

• Enumerate l = k − j:
n∑

i=0

aiy
(i) = eαx

k∑
l=0

kk−lCk−lx
l
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Finding Particular Solutions for a Class of Differential Equations

• We take the smallest p such that Cp ̸= 0.
• Then when y = eαxxk, the coefficients of terms from xk to xk−p+1 in

∑n
i=0 aiy

(i)

are all 0, and the coefficient of the xk−p term is not 0.
• Therefore, to find the solution of this differential equation, the highest degree term

should be eαxxm+p.
• We determine from highest degree to lowest degree,

n∑
i=0

ai(e
αxxm+p)(i) = eαx

m∑
l=0

(m+ p)m+p−lCm+p−lx
l

• To make the coefficient of eαxxm in
∑n

i=0 aiy
(i) equal to bm, the coefficient of

eαxxm+p should be bm
(m+p)pCp

.
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Finding Particular Solutions for a Class of Differential Equations
bm

(m+ p)pCp
eαxxm+p

• The subsequent bi (i < m) should subtract the influence of this term, i.e.,
bi ← bi −

bm
(m+ p)pCp

Cm+p−i(m+ p)m+p−i

• Continue solving for the new differential equation.
• Let zp, . . . , zm+p be the coefficients of the terms eαxxp, . . . , eαxxm+p respectively.
• Then

zi =
bi−p −

∑m+p
j=i+1 zjCj−i+pj

j−i+p

Cpi
p

=
1

Cpi
p

bi−p −
1

(i− p)!

m+p∑
j=i+1

(zj · j!) · Cj−i+p


• We can use CDQ divide and conquer FFT.
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Finding Particular Solutions for a Class of Differential Equations

• Python Code Without FFT
• We can also use a similar method to find the particular solution of∑n

i=0 aiy
(i) = P (x) sin(αx) +Q(x) cos(αx), but we need to note that

differentiating sin(αx) affects cos, and vice versa.
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