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Complex Numbers

A number of the form a + ib (a,b € R?) is called a complex number, where i is the
imaginary unit with i2 = —1.
e Addition of complex numbers:

(a+1ib) + (c+id) = (a+c) +i(b+ d)

e Complex addition satisfies closure, commutativity, and associativity. There exists an
additive identity 0 (Vo € C, 2+ 0 = z), and every complex number has an additive
inverse (Vx € C, 3y e C, z+y=y+x=0).
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Complex Numbers

A number of the form a + ib (a,b € R?) is called a complex number, where i is the
imaginary unit with i = —1.
® Multiplication of complex numbers:

(a+ib)(c+ id) = ac — bd + i(ad + bc)

® Complex multiplication satisfies closure, commutativity, associativity, and

distributivity. There exists a multiplicative identity 1 (V2 € C, 1z = z1 = ), and
every non-zero complex number has a multiplicative inverse
(Vx € C*, Jy € C, azy = yx = 1).
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Complex Numbers

® |let z =a+1b.

Modulus of a Complex Number
|z] = Va2 + b?
® If a,b are not both zero,
z

a

b
= +i
Va2 + 02 Va2 +b?
® We can find 6 such that cos(f) =

a : _ b
TR and sin(f) =
coordinate representation of a complex number.

® Therefore, we can write z = a + ib as |z| (cos(f) + isin(f)). This is the polar

VaZ+b?
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coordinate representation of a complex number.

® Therefore, we can write z = a + @b as |z| (cos(#) + isin(f)). This is the polar
Euler’s Formula
e = cos(6) + isin(0)

® So we can express z in the form |z|e®.
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Roots of Unity

n-th Roots of Unity

The complex roots z of the equation
2" =1 (n € N¥)
are called the n-th roots of unity.

® |t can be verified that there are exactly n n-th roots of unity:
.27
etk (k=0,1,...,n—1)

o\ T .
(e’%k> = 2™ — cos(2mk) + isin(27k) = 1
° letw, = et Properties:

® Because
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Fourier Transform

Fourier Transform

¢ From Chapter 4 of Signaux (Signal Theory) in the first semester of sophomore year:
For a function f with period 7', find the Fourier series:
_ 2 to+1T o2
C, = T A f(t)exp (—ant) dt.
We can derive:
+00
FFT

f(t) =Re (Z C,, exp

5 e ()
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Discrete Fourier Transform

discrete)

) LAY
e Discrete Fourier Transform: Discrete Fourier Transform (Transformation de Fourier
Discrete Fourier Transform
For a sequence (sn)nefo,n—1], its discrete Fourier transform sequence (.5,,) satisfies:
Vnelo,N—-1],
N—1
S = Z Sk €Xp

2
(—zﬁﬂk‘n)
=

0
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Discrete Fourier Transform

Continuous Fourier Transform Discrete Fourier Transform
= 0¥ T X - ;
C, = % t0°+ f(t) exp (—jnwt) dt = Zk:ol Sy, exp (—z%kn)
T N
n n
t k
FFT
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Discrete Fourier Transform

x«

i Example Problems
- /é)k ﬁ}t \Q
Inverse Discrete Fourier Transform
Inverse transformation (Inverse DFT, or IDFT)
N—1
E S exp

()
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Discrete Fourier Transform

Discrete Fourier Transform

Continuous Fourier Transform Discrete Fourier Transform
Co= 7 [ FOyexp (—jnwt)dt | Su= T3 skexp (% kn)
T N
n n
¢ k
f( ):Re( o0 Cpexp (j%n )) Sk:%z ' Sn exp (i5Fkn)
T N
¢ k
n n
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Discrete Fourier Transform

® Proving the inverse transformation
® et w=-exp (

Z). Vkel,
N-1
N Nk
kn __ Z ( n o__ ’ ’
Zw = we)" =9 v 1—exp(iZTEN
n=0 n=0 11:’1)]6 = 1£w]Z ) = 07 N+k
*VO<k<N
1 N-1 N-1 N-1
wan Z kn W
n=0 n:O
B 1 N-1 N-1
N

<
I
o
3

w(k r)n
=0

3

>
r=0
N-1
= Z [k =7r|N = si
=0
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Discrete Fourier Transform

N-1 1 N-1
Sn — w_ank — w—kni wkrST
k=0 k=0 N r=0
N—IS 1 N-1 _— N—lS 1 [ ]N 5
= — w = —|r=n|N =
r=0 ‘N kZ::O r=0 ‘N !
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Fast Fourier Transform

Fast Fourier Transform

e If we perform DFT according to the definition, calculating .S,, = Zk 0 W™
each n € [0, N — 1], we need to first enumerate n € [0, N — 1] and then

enumerate k € [0, N — 1], resulting in a time complexity of O(N?). The same
applies to IDFT.

kng, for

® There exists a faster method, the Fast Fourier Transform (FFT).

® One common implementation is the Cooley-Tukey algorithm. Using a

divide-and-conquer approach, it improves the time complexity to O(N log N') (with
log base 2).
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Fast Fourier Transform

Cooley-Tukey {

B) FERAAY
e Consider the case N = 4 with sg, s1, $2, s3 (w = exp (Z%Tw))

® We split (s, s1, S2, $3) into two sequences: (tgp = sg,t1 = s2) and
(ty = s1,t) = s3), and perform Fourier transforms on each sequence separately,
obtaining Ty = so + s2, T1 = so +w 289, T = s1 + s3, T = s1 + w ™ 2s3.
® Now we want to compute the Fast Fourier Transform of (so, s1, s2, s3):
So = S0+ 81+ s2+ s3 =Ty + T},
Sy =50+ w 2s; +w tse +w 0sy =Ty + w‘2T6 =Ty, — 1T
S =so+w sy +w 2sg+w3sy =T +w T,
Sy =s0+w3s1 +w lsg+wls3 =T +w3T) =Ty —w 1T7.

«40>» «F» «E» «E» = Q>
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Fast Fourier Transform

Cooley-Tukey

Pulvnom

® Extending to the case N = 8 (w = exp (
So =

i20)):
(30+51+52+83)+(54+85+86+37) Ty + T},
54 = (so+ s2+ 84+ s6) + (51 + 83485+ 87) =Ty +w 2T =Ty — T},
= (so +w2sy +w™ 434 +wbse) +wl(s1 +w sz +w sy +w Osy) =Ty +w T,
= (s0+w sy +w sy +w 0s6) +w (s +w sz +w sy +wOsy) =T —wT T,
= (80 + wtsy + 84 +wtsg) + w‘2(81 +w sy + 85 +wlsy) =
= (so+w sy + 54 +wsg) +wC(s1 +w sz + 85 +w
= (8o +w sy +w sy +w?s6) + w3 (s +w™
S7 = (s0+w %o +w sy +w2se) +w”

T + w_2T2,
57) =
633 +w™
(s1+w™

T — wiQTQ,
435 +w™

7) =
683 + w_4s5 +w™

257) =

T3 + w*3T3,
T5 — w_BTé

«0>» «F» «=)>» 4«
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Cooley-Tukey

Polynon

ample Problems
BF €T
/R Ao S
® Assume N =2". Let M = § =271,
® We have already performed Fourier transforms on (sg, s2,...,Sy—2) and
(s1,83,...,8Nn—1) separately, obtaining (Tp, T4, ..., Tar—1) and (15, 1]
M—1
Ty, = Z Son €XP
n=0

oo Thq).
2
(—zﬂ?kn)
M—1

!
T, = Z S2n+1 €XP

2
(—zﬁkn)
n=0
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Fast Fourier Transform

Cooley-Tukey

27
S, = nz:% Sp €XP (—szn)
M—1
= Son €XP (—ik‘ 2n> Z Son41 €XP (—zk (2n + 1))
n=0
M—1

k
=Ty + T} exp <227TN>
* Or:
g Ty, + T} exp (—i2m %) , k< M,
T\ Theas — Ty exp (—i2nhsM) | k> M
«4O0>» 4F>» «=E>» (> = 2K N&2
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Fast Fourier Transform
Butterfly Transformation
x[0]
*14] '
x[2]

x[6]
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Fast Fourier Transform

Pseudocode

func dft(sg, $1,...,8N_1):
Result: (S, 51,

..,SNfl)
if N =1 then
| return (sp)
else
M+ %
(To,Tl, -aTM—l) < dft(sg, S2,...,8N_2)
(Té,T{, s ]/\/[_1) <« dft(sy,83,...,8N_1)
for k< 0to M —1do

Sk« Ty + Ty exp (—iQF%)
end

Sk+M — Tk — Tk+M exp (71‘2%%)

return (Sp, S1,...,5v-1)
end

j YERAAE
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Fast Fourier Transform

Cooley-Tukey

ey SN—I):
Result: (Sg,S1,...,5nv-1)
if N =1 then

| return (so)

else
M+ &
(To,Tl, Ce 7TM—1) — idft(SQ,SQ,. . .,SN_Q)
(Té,Tll, Ce 7TJ/\4—1) — idft(81,83, . .,SN_l)
for k< 0to M —1do

Sk +— Ty + Tyt 0 €Xp (+Z.27T%)

Sk+M — Ty — Tk+M exp (+7;27T%)
end
return (Sy, S1,

.. .,SNfl)
end

«0>» «F» «=)>» 4«

® For the inverse DFT: we only need to change exp (—i27r%) to exp (iQW%).
func idft (sg, s1,
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Fast Fourier Transform

Cooley-Tukey

® Analyzing its time complexity.

® Let T'(n) represent the number of operations for performing FFT on a sequence of
length n.

® T(n) =2T (%) + O(n), where O(n) means the number of operations can be
approximated as a constant multiplied by n.

® From the Master Theorem[?, we get T'(n) = O(nlogn), which is significantly more
efficient than O(n?).

® This is FFT with base 2 (splitting into two halves each time), but other bases or
mixed bases can also be used.

«0>» «F» «=)>» 4«

it
[
N
el
?

SPEIT



Polynomials
[ ]
“ Complex Numbers

Fast Fourier Transform

Polynomials

Polynomial Multiplication
Polynomial Inversion

Other Polynomial Computation Methods

Example Problems

«0O0>» «F5» « >

<

v

A

SPEIT



90000
Polynomial Multiplication
“ Complex Numbers

Fast Fourier Transform

Polynomials
Polynomial Multiplication
Polynomial Inversion

Other Polynomial Computation Methods

Example Problems

A

SPEIT



Numbers

Polynomial Multiplication

Polynomial Multiplication

® Let's observe the Fourier transform formula again

2
Sk exXp (—iﬁkn>
k=0
N-1 k
® Define N-1
® Then

A

SPEIT

(\ “'é)\ 7‘7’)6@

#/ SHANGHAI JIAO TONG UNIVERSITY



Complex Numbers

Polynomials

Polynomial Multiplication

Polynomial Multiplication

® Therefore, the discrete Fourier transform can obtain the values of a function at
points z = exp (—i2n) (0 < n < N).

® The inverse discrete Fourier transform can recover the original function from its
values at points x = exp (—z%rn)

® An N-th degree polynomial function can be uniquely determined by knowing its
values at N+1 points.

® For an M-th degree function F'(z) and an R-th degree function G(x), their product
(FG)(x) = F(x)G(z) is an (M + R)-th degree function.

e We choose N = 20108 (M+E+1)] \We perform discrete Fourier transforms to obtain
the values of F' and G at points x = exp (—i2In) (0 <n < N).

e Vr € C, (FG)(z) = F(x)G(x). Therefore, we obtain the values of F'G at points

T = exp (—z%’rn) After inverse transformation, we get the polynomial F'G.

«0>» «F» «=)>» 4« >
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Polynomial Multiplication
Polynomial Multiplication

AL
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® This is equivalent to quickly calculating the convolution of two sequences

Cp = Z agbp_j
® The time complexity is O(nlogn)

«0>» «4F» «E» « =)
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Polynomial Multiplication

Polynomial Multiplication

® In practical numerical calculations, since both the real and imaginary parts of the
roots of unity are decimal numbers, errors are unavoidable.
® In programming contests, we generally use p = 998244353 as the modulus:
® 998244353 is a prime number, and Z/pZ is a field (we can define addition, subtraction,
multiplication, and division; every non-zero = has a multiplicative inverse ! such that
r-2~ =1 (mod p), because according to Bézout's identity, the equation
x-27 ' —p-y =1 has a solution).
® 998244353 has a primitive root 3 (Vr € [1,p — 2], 3" # 1 (mod p)). Therefore, 3
satisfies the properties of complex roots of unity. (Euler’s theorem: V(a,p) =1,
a¥®) =1 (mod p))
® 998244353 = 7 x 17 x 223 + 1, and 223 | ¢(p) =p — 1. For any N = 2"(r < 23), we
can compute 3% as a complex root of unity.
e Fast Number Theoretic Transform (Number-theoretic transform).

® There are also fast number theoretic transform algorithms with other moduli, such
[3] «O>» «Fr» «E» «E>» = wa v
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Polynomial Inversion

Polynomial Inversion

® For N € N* and a polynomial P(z) (pg # 0), find a polynomial Q(x) such that
P(z)Q(x) =1 (mod zV).

® Let po,p1,...,pN_1 be the coefficients of 2 2!,... 2N=1in P(z). Similarly for
q0,491,---,4gN—1-

First Method

® qo =550

® Recursively compute g (1 <,£c < N):

szQk i = Pogk +szqk i=0

- (Z piQk—i) /Po
i=1

«4O0>» «4F» «=>» (=

® The algorithm complexity is O(N?).
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Polynomials
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Example Problem

Polynomial Inversion

Polynomial Inversion: Second Method

® The above equation is in the form of a convolution.
® \We want to optimize using FFT, but we need to find the values of qg, q1, . .
before we can find g;.

® We use the idea of CDQ divide and conquer (Chen Dangqi's divide and conquer[4])
to solve in batches and perform convolution.

-y qi—1

Polynomial Inversion Using Divide and Conquer

® For example, we now need to compute qo, q1,- - -, qn.
® Define ¢, = Zle DiGk—i- Then qr = —tr/po. So the key is to compute ty.
® Assume we already have qo, g1, - - ., gm (this step can be considered as recursive solving).

® First consider the contribution of qq, ..., ¢m to tx (m+ 1 <k <mn). That is, we compute

> Piqr—i. This is obviously in the form of a convolution and can be accelerated
1<i<k,k—i<m

Sin FFT «40>» «4F» «E» 4« » Q>
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Polynomial Inversion

Polynomials
o

Polynomial Inversion: Second Method

CDQ Divide and Conquer
Suppose a sequence (fo, f1,

.., fn) has a recurrence relation.
func solve(l, r):
Result: Find fi, fiz1,..-, fr
if | <r then
. l+r
mid — L%J
solve(l, mid)

Calculate the influence of fi, ..., fmid On finid+1, -
solve(mid + 1, r)

"f’!‘

else

‘ Find f;
end

«0O0>» «F)» « =

> <
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Polynomial Inversion
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Polynomial Inversion: Second Method

f(]afla

e Correctness: Vi, before finding f;, we have considered the influence of
s fi-1on fi.
® Time Efficiency:
® The influence of fi,.
accelerated using FFT.

s fmid ON fmidst,

get T(n) = O(nlog®n).

, fr is a convolution, so it can be
* Time complexity T'(n) = 27" (%) + O(nlogn). According to the Master Theorem?, we

«0O0>» «F5» « E)>»
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Polynomial Inversion

Polynomial Inversion: Third Method

Taylor Expansion

e If a function f(x) is n-times differentiable at a point x¢ in its domain, then

£(2) = F(@o) + F(@0)(@ — w0) + - &0)

2
F)@0)

+ T(w —20)" + 0z—szo ((T — 20)")

") (g .
= L 20y 4 n e (2~ 200
=0

7!

(x —x0)% +...

® This means that in the neighborhood of x(, we can approximate f(z) as a
polynomial.

® |t can be verified that the original function and its Taylor expansion have the same
«O>» «F»>» «E» « > = acv
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Polynomial Inversion

Polynomials

Polynomial Inversion: Third Method

Newton’s Method
e We want to find a zero of a function f(x), i.e., f(zg) = 0.

® \We use an iterative method to continuously approximate the zero.
® |let x; be the current iterated point. We perform a first-order Taylor expansion of f
at 1.
f(@) = f(z1) + f'(21)(@ — 21) + 05, ( — 20)
Solvin
¢ f@n) + f'@)(@ —a1) = 0
f(#1)
T=1I1 — =
f'(@1)
o 1z — L@ 4ng i
1 X1 (1) and iterate again.

SPEIT
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Polynomial Inversion

Polynomial Inversion: Third Method

* Now we want to find Q(z) = (P(x))~" (mod 2™) (we will omit (x) from now on).
® We define the function F(A) = 4 — P. Then F(Q) =0 (mod z%).

e Consider Newton's method: Suppose we have found Qo = P~ (mod z/V/21).

Now we want to find @1 = P! (mod V), i.e., find the coefficients of P~! from
[N/2] to N — 1.

® Qo= Q1 (mod QJW/Z]).

F(Q1)

F(Qo) + Q)@ — Q)+ (g, — o) +
F(Qo) + F'(Q0)(Q1 — Qo) =0 (mod z™)

F(Qo) N
Q1=Qo — F(Qo) (mod x™)

«4O0>» 4F>» «=E>» (> =
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Polynomial Inversion
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Polynomial Inversion: Third Method

o F/(A) = $5(4) =~

Ql QO + QO (QO — P> (mod ZEN)

Q1 =2Qo — PQ§  (mod ™)
e We can verify: PQ; = P(2Qo — PQo)? = PQo(2 — PQp) (mod z™)

® PQo=1 (mod x/N/21). So there exists a polynomial R such that
PQo=1+zN2IR=1 (mod zV)

* PQi = (1+x(N/21R) (1

_ fo/ﬂR) =1—(x fN/21R) =

1 (mod zV)

SPEIT
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F1~L Fourier Tn mslonn

Polynomlals

® Pseudocode

00000000«

Polynomial Inversion: Third Method

func getInv(P, N)
Result: Q = P

E nple PIU|)|¢—'II]5

if N =1 then

‘,%;’ v
(mod z)
‘ -1
return p,
else

N
M+ [5]
2

Qo + getInv(P mod 2™, M)
return Qy(2 — PQp) mod x

end

® Time complexity T'(N

Theorem!? | we get T( )

T (4) + O(Nlog N). According to the Master
O(NlogN)

«O» «F>»

«E)»
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Polynomlals

Other Polynomial Computation Methods

Polynomial Division C“/ AL

® Given an N-th degree polynomial A and an M-th degree polynomial B (M < N,
an,byr # 0), find polynomials  and R such that A = BQ + R and deg(R) < M.

e We can conclude that @ is an (N — M)-th degree polynomial, with gn_j; = 72

W!
and then we can recursively derive qn_pr—1,9N—nr—2, - - ., qo. After finding @), we
can compute R = A — BQ.

We observe that the coefficients are determined from highest to lowest degree. If

we follow the idea of polynomial inversion, we need to reverse the coefficients of
these two polynomials.

- N 4 N . N 4
e Alx)=aVAL) =2V Y gz =Y aiaV = 3 an_jal.
i=0 i=0 j=0
e Similarly, B(z) = 2MB (1), Q(z) = 2N"MQ (1), and R(z) = 2M71Q (1).
«4O0>» 4F>» «=E>» (> = 2K N&2
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Other Polynomial Computation M
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ethods

Polynomial Division

Q(z). The time complexity is O(N log N).

Polynomials

® We can use polynomial inversion to find Q(x), then reverse the coefficients to get

A
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Other Polynomial Computation Methods

E nple PIU|)|¢—'II]5
)OO0®00000000 )¢

Polynomial Fast Exponentiation

¢ Polynomial In: For a polynomial P(z) (pp = 1), find In P(z)
* (P ))' iG]
P(x
* mnP(z) = [ L& ))d:c
* hP(z) = [ P(x)

lnP( ) =0)
)~ldz (mod z¥)

o Polynom|a| exp: For a ponnomlaI P(z) (po =0), find exp(P(x)) (mod =)

o Q@) = exp(P(a)) = 32 E@ = S P@ (104 )
1=0 1=0
® Define F(A) =1In(A) — P. So F'(A) = +.

® Newton's method: Q; = Qo — Qo (In(Qy) —

P) (mod zV).
® Polynomial fast exponentiation: Find P(x)

¥ (mod 2V).
* Define P'(z) = 220 Then [2°]P'(z) = 1 and P(z) = poP'(x)
* P(x)f =pgP'(x ) = phexp(kIn P'(a)).

«0O0>» «F5» « E)>»
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Other Polynomial Computation Methods

Polynomial Multi-point Evaluation

® For an N-th degree polynomial function P(z).

e Given M points (z1,z2,...,2), find P(z1), P(x2),..., P(za).
e In fact, P(xy) = P(xz) mod (x — xg).
® Proof:

® Let Q(z), R satisfy Q(z)(x — x) + R = P(x).

® Substituting xy, we get R = Q(xy)(zx — zx) + R = P(xy).

SPEIT
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Other Polynomial Computation Methods

Polynomial Multi-point Evaluation

We can solve this using divide and conquer.

First, we compute Hf\il(:v — x;) using divide and conquer, and then compute
P(z) mod (Hf\il(m‘ — acz))

Then we perform top-down divide and conquer. For example, solve(l,r) has
P(z) mod (I];_;(x — x;)) (denoted as P, .(x)).

Let mid = [5].

Compute P} miq = Pr(x) mod (H:’i@ld(:n — acl)) and continue the divide and
conquer for (I, mid). Similarly for (mid + 1,7).

When [ = r, we get the value of the polynomial function at z = z;.

«40>» «F» «E» «E» = Q>
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Other Polynomial Computation Methods

func getProd(l, r):

. Polynomials
Polynomial Multi-point Evaluation
if [ <r then

mid < V"’TTJ
else

-t

return Prod,, < getProd(l, mid) x getProd(mid+ 1, 1)
| return Prod;; < x — 1
end

unc getValue(l, r, P):
if [ <r then

mid < LH—T

else

getValue({, mid, P mod Prod; yiq)

getValue(mid + 1, r, P mod Prodmidti,r)
‘ res; < P
end

«0O0>» «F5» « E)>»
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Other Polynomial Computation Methods
Polynomial Multi-point Evaluation \
® Complexity analysis:

® getProd and getValue: T (M) = 2T (%) + O(Mlog M) = O(M log® M).
® The total time complexity is O(N log N + M log? M).

«O» «F>»
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her Plynomial Computation hods
Polynomial Fast Interpolation

0O0000000e000

¢ Given N+1 points (x0,%0), (1,Y1), - - - » (Tn, Yn) (with distinct x-coordinates),
determine an N-th degree polynomial function P such that V0 < i <mn, P(x;) = y;.
Lagrange Interpolation
® Define
Q)= ] @-=)
0<i<N,i#k
® The unique N-th degree polynomial function P satisfies

N
P(z) =)
k=0

Y

k
2 Qk(-fk)Qk(x)
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her Plynomial Computation hods
Polynomial Fast Interpolation

000000000800
® First, we solve how to compute Q(xg).
N
I1 (z—i)
* Qr(x)

__ =0

T—IL

11 <mi>> (ax)
=0 _
=0

(z—z) (zr)

N

e When = = x, both the numerator and denominator of Qy(x) are 0.
N
e L'Hopital's rule: Qx(xg) =
( N
[}

O(Nlog? N) time.

/
~ (M=) @
i=0
/
(x — x2)> does not depend on k, so we can perform multi-point evaluation in

«0O0>» «F5» « E)>»
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Complex Numbers

Other Polynomial Computation Methods

Polynomial Fast Interpolation

N
® Now the problem is how to quickly find >~ y,. Qi (x).

x
k=0
® We can split Qi (x) into Prodg;—1(x) = [] (x — ;) and
Prodyq n(z) =

k—1
x
i=0
N
I (z—a).
i=k-+1
[1

1<i<r,itk

(x — ;).

,
® When we divide and conquer to [I,r], we can simultaneously find [ (z — 2) and
k=1

A
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Cumplex Numbers

F1~L Fourier
Other Polynomial Computation Methods

nslonn

500 Polynomlals
Polynomial Fast Interpolation

T

H(a: — T)

® Merge the answers for [I,mid]| and [mid + 1, 7]

mid r
— H(x —ap) -
k=l k=l k=mid+1
T mid
Yowr I @-w)= Zyk [I @-w)
k=l I<i<rji#k k=l I<i<mid,i#k
r
+1>

k=mid+1
® The time complexity is also O(N log? N)

mid+1<i<r,i#k

«0>» «4F» «E» « =)

H (x — xg)

T

H (x — ;)

i=mid+1

mid

(x — ;) H(:v — ;)

1=l

A
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Example Problems
0®00000000000000000000

. GRN ViEF A A
Luogu P5850 calc Enhanced Version &) riexars

® Problem Link

® Given m and k.

e A sequence (ai,as,...,ay) of length n is valid if and only if:
O a,as,...,a, are all integers in [1, k];

M ai,ao,...,a, are distinct.

® For V1l <n <m, find

Z ﬁ a; mod 998244353

(a17'~~:an) valid i=1

* m<5x10%, 1 <m <k < 998244352 (requires an O(mlogm) algorithm).

«4O0>» 4F>» «=E>» (>
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® Since aq,

Luogu P5850 calc Enhanced Version Solution[®!
@1, - -, Qp, then multiply by n!.
k

Example Problems

5080000600000000000000

., an are distinct, we can first compute the answer for strictly increasing

® The answer for n is [z"] ]:[ (1+iz). So we just need [] (1 + iz) mod ™t
. =1

k
H(l +ix) = exp

=1
k
(Z In(1 + iz)
=1 3

=1 >
k +oo
= exp

(—1)71ilad

A
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Cumplex Numbers F1~L Fourier Tnnslonn

Polynomi

Example Problems

Luogu P5850 calc Enhanced Version Solution[®!

of summing powers of natural numbers

k +oo
Zx”
7=0

iﬁ)ﬁ

000@0000000000O00000000
® Now the bottleneck is to compute Zle i/ (1 < j < m), which is a typical problem

= 1] 0
® Therefore

i) = Sk 1)~ exp(e)
_; p( exp(z)

k

g i exp((k +1)z) — exp(z)
il = jl[a’] P

; j

We can use polynomial inversion

-1

exp(z)

 exp((k+1)a)—exp(a)
S — el

xT

exp(z)—1
x
«0>» «F» «=)>» 4«
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Example Problems

The Meaning of Polynomial exp

000080000000 00O00000000

N labeled balls are divided into any number of unlabeled boxes. Each box can hold at most
M balls.

Given f1, fo,.. ., fm

Suppose a division has m boxes, and the number of balls in each box is a1, as, .
then the weight of this division is []"; fa,-

ey Gy,

Find the sum of weights of all divisions.

Assume only fi # 0 and all other f are 0, meaning each box can only have size k.
Let the number of balls be n (k| n), then the sum of weights of these schemes is

mfk , which is n![z ]exp(fk )

«O>» «FF»>» «E» «E>» = Q¥
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The Meaning of Polynomial exp

® The answer is

(al"“’aM)’ZiAil ta;=
=N!

> [ *exp (fA
1M, éa;=N

)
=N![z Hexp< )

N M
ai,2as, ..., May
N

«0O0>» «F5» « E)>»
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® Now add boxes of different sizes. Assume there are a; boxes of size k

A

Example Problems
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Example Problems
000000@000000000000000

Counting Labeled Simple Undirected Connected Graphs”'

Problem

There are N labeled points, find the number of simple undirected connected graphs.

@ Simple: no self-loops (edges from a point to itself), no multiple edges (no two edges
connecting exactly the same pair of points).

@ Undirected: edges have no specified direction.
© Connected: for any pair of points in the graph, there are several edges connecting these two
points.

® First, ignore the "connected” requirement. A simple undirected graph is just
deciding whether there is an edge between any pair of points, so the number of
N
simple undirected graphs with n points is 2(2).

® A simple undirected graph can be split into several simple undirected connected
graphs, and there are no edges between these connected graphs.

«0>» «F» «=)>» <«

it
it
N
el
?

SPEIT



Complex Numbers

Example Problems
0000000800000000000000

3
v

Counting Labeled Simple Undirected Connected Graphs@/' RéL

® So place N labeled points into several boxes, each box corresponding to a

connected graph, and a box containing m points corresponds to the number of

simple undirected connected graphs with m points. The sum of weights of all
schemes is the number of simple undirected graphs.

® This corresponds to the meaning of polynomial exp. The exp of the EGF of the
number of simple undirected connected graphs is the EGF of the number of simple

undirected graphs. Taking the In, the final answer is N![z"]In (Z 2(3) ”>

n>0 nl L

SPEIT



Linear Constant Coefficient Homogeneous Recurrence (&
® fu=211aifni (n>p).
® |et

<) 2 i@'}ﬁ/‘?
ap Qp—1 ... a2 ai
1 0 0 0
A= . .
0 0 1 0
® Then s
p+n

A
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Polynomials

Linear Constant Coefficient Homogeneous Recurrence (@) #X44%

000 e 2802 560000600

® We can compute A™ using matrix exponentiation. But this has a time complexity
of O(p®logn), which cannot handle cases where p is large.
Cayley-Hamilton Theorem!l®!
For an n X n square matrix A, let its characteristic polynomial be
p(A\) = det(A,, — A), then p(A) = O.
® |t can be verified that: p
p(A) =N

— Z ap)\p—i
=1
® To find f,, we need to find A" P
e Consider 2P = p(x)Q(x) + R(z) (polynomial division). Then
A"P = p(A)Q(A) + R(A) = R(A)
o @

«E)»

<

3
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Cumplex Numbers

® R(x) is a polynomial of degree p — 1. Let R(x) =
Jn

I
= A"
fn—p-H

Linear Constant Coefficient Homogeneous Recurrence

Zz o it
p—1 fp p—1 f’H‘P
= Z TiAi = Z T :
fl =0 fl =0 fi+1
® To find f,, we only need to consider the first row of the matrix
p—1
fa= Z T‘iferp
i=0
¢ Quickly find 7P mod p(z): fast exponentiation
* Compute ¥ mod p(z): if k is even, then z* = (2*/2)
2F = 2"~z (mod p(x))

2k/2)? (mod p(x)), otherwise
® Using polynomial division, the time complexity is O(plogplogn)

«O0>» «F» 4«
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Cumplex Numbers

Example Problems

® Quickly find fitlse- o fierfl:
® OGF of f:

>

ERAAY

Linear Constant Coefficient Homogeneous Recurrence @/

+oo
(@)= fr*
k=1

p
n Spa fn _Zaifnfi =0

i=1

P P i—1
x) (1—Zai$i> szi fz‘—zajfi J
=1 i=1 j

¢ Divide both sides by 1 — Y7
O(plogp).

)
zlax’

using polynomial inversion, with time complexity
® The total time complexity is O(plogplogn)

A
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ourier Transform oo T ——— l(E)xoac’;ggg(':onzjbolgnolsoooooooooo
. . - . . - PR Lex x A
Finding Particular Solutions for a Class of Differential E@}ﬂfm@(f
Find
n m
Z aiy® = e® Z bja’
i=0 §=0
a particular solution of the form e®® multiplied by a polynomial (a,, # 0).
® First consider the derivative of y = e**x
® Define

k

r—1 .
LT — {Hio (k —1)
1
called the r-th falling factorial of k.

A
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® QObserve

y/: ety (al‘k+kl‘k 1)7

y(2) =e { 2ek 4 20kt + kzxkfz} )
ar
® We can find the pattern:

T

y(r) — 0k Z

r . .
< > ar—zkgxk—z
, 1
=0
® This can be proven by mathematical induction.

y(3) =e [ ¥ + 302ka* ! + 3ak22h 2 + k§$k_3]

A

Finding Particular Solutions for a Class of Differential E@
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Cumple Numbers

® Proof by induction.
® Clearly true when r = 0.

Example Problems
+1

e Assume y(r) — 0T Zz 0 () T—i i pk—i

o3 ()
«
=0
Z (7’> Qi k=i + (

1=0 v
r+1
(7"> qrtiipipk—i (
=0 v
FFT

0000000000000 0e0000000

T

T

+

4oeT . " (7") ) (k‘ _ Z-)mk—i 1
1
— 0% [

=

+

S -

r+1
r+1
—e - (
1=0

> r+1 de(k _ (l _ 1))xkz]
=1
ar+17ikgxk7i.
1

> r+1—ikimk—i]

A
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i r oly i Example Problems
SANASASASA 000000 )OO0000000000000000 0000000000000008000000

Finding Particular Solutions for a Class of Differential E@}ﬁfm@‘?

In fact, this coefficient (Z)of—ikz can also be derived using combinatorial meaning.

(e‘ka)/ = e (ka*~! + ax¥). So for e®*z*, there are two possibilities after
differentiation:

@ The degree of x decreases by 1, i.e., ¥ — x"~1, and the coefficient is multiplied by k;
@ The degree of x remains unchanged, 2* — 2*, and the coefficient is multiplied by .

After r differentiation operations, z* — x*~¢, which means there are i operations
of type 1 and r — ¢ operations of type 2.

For operations of type 1, the product of these coefficients is
k(k—1)...(k—i+1) =k

For operations of type 2, the product of these coefficients is a” .

There are (:) ways to choo;e ‘z' operations of type 1 from r operations.
So the coefficient is (;)a" kL.

SPEIT
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® Therefore

Z aiy!”
e Define

Example Problems

0000000000000 000e00000

7=0
® Therefore

Finding Particular Solutions for a Class of Differential E@

Batibhs: !
Zn T
’ <>a7‘_‘7ar
r=0 J

n k
Z aiy(i) = e Z kiijk*j
i=0 j=0
® Enumerate [ = k — j:
n ) k
Z aiy = e*® Z kE=loy ot
i=0 1=0

«O» «F>»
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Finding Particular Solutions for a Class of Differential E@}yﬂfm@‘?

® We take the smallest p such that C,, # 0.

® Then when y = e®®z*, the coefficients of terms from z* to 2*~P*+1 in Yoo aiy®
are all 0, and the coefficient of the 25~ term is not 0.

® Therefore, to find the solution of this differential equation, the highest degree term
should be e®®x™*tP,

e We determine from highest degree to lowest degree,

n m
Z a; (eam$m+p)(i) — 0% Z(m + p)m+p—lcm+p_lxl
i=0 =0

® To make the coefficient of e z™ in Y " aiy) equal to by, the coefficient of

b
e*Tx™*P should be —2m,—.
(m+p)2C)

SPEIT
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eaa:xm-l—p
(m + p)2C,
® The subsequent b; (i < m) should subtract the influence of this term, i.e
bi —b;
® Let z,

Example Problems

0000000000000 00000e000
;—
(m+
e Continue solving for the new differential equation
e
® Then

m

Finding Particular Solutions for a Class of Differential E@}t
bin

sEx gAY
Crntp—i(m + p)t2=
p)ECy
Zm+p be the coefficieﬂts of the terms e**xP,
—it
o= bifp j=i+1 C] z+p]J L
! Cpi®
1
Cpi?

e ™TP respectively.
m-+p

TG —p)! > (7Y

Jj=i+1

® We can use CDQ divide and conquer FFT

J i+p

A
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® Python Code Without FFT

® We can also use a similar method to find the particular solution of
S aiyW = P(z)sin(ax) + Q(x) cos(azx), but we need to note that
differentiating sin(ax) affects cos, and vice versa.

A

Finding Particular Solutions for a Class of Differential E@
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https://pastebin.ubuntu.com/p/Y38bGH7TBw/

Example Problems
0000000000000 0000000e e

References |

[1] Shun HUNG H.Architecture of 8-point Decimation-in-time FFT. [Online; created
16:58, 27 June 2011]. 2011.
https://commons.wikimedia.org/wiki/File:DIT N8 ALL.JPG.

[2] Wikipedia.Master theorem (analysis of algorithms) — Wikipedia, The Free
Encyclopedia. http://en.wikipedia.org/w/index.php?title=Master%20theorem
%20(analysis%200f%20algorithms)&oldid=1122572444. [Online; accessed
30-November-2022]. 2022.

3] E BFEREEEN TR 2016 F(55 3 BT 52 5% % o E E R EE 5
3, 2016.

[4] BRFHE. I (Cash) R—ESREERIMA. 2008 FEEFE &AL,
2008.

«40>» «F» «E» «E» = Q>

FFT SPEIT


https://commons.wikimedia.org/wiki/File:DIT_N8_ALL.JPG
http://en.wikipedia.org/w/index.php?title=Master%20theorem%20(analysis%20of%20algorithms)&oldid=1122572444
http://en.wikipedia.org/w/index.php?title=Master%20theorem%20(analysis%20of%20algorithms)&oldid=1122572444

Example Problems
0000000000000 0000000e e

P SE X A
References |1 79 FALLLE

[5] lostream.iostream HY1EZE - Fifig P5850 [calc fiNsEARR] 2020.
https://www.luogu.com.cn/blog/user13052/solution-p5850.

[6] Wikipedia.Cayley-Hamilton theorem — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Cayley % E2%80%93Hamilton %20
theoremé&oldid=1120554488. [Online; accessed 01-December-2022]. 2022.

«0>» «F» «=)>» 4«

it
[
N
el
?

SPEIT


https://www.luogu.com.cn/blog/user13052/solution-p5850
http://en.wikipedia.org/w/index.php?title=Cayley%E2%80%93Hamilton%20theorem&oldid=1120554488
http://en.wikipedia.org/w/index.php?title=Cayley%E2%80%93Hamilton%20theorem&oldid=1120554488

 YEZEAY

SHANGHAI JIAO TONG UNIVERSITY

«O0» A4F» 4«



	Complex Numbers
	Fast Fourier Transform
	Fourier Transform
	Discrete Fourier Transform
	Fast Fourier Transform

	Polynomials
	Polynomial Multiplication
	Polynomial Inversion
	Other Polynomial Computation Methods

	Example Problems

